1
|
Dulchavsky M, Mitra R, Wu K, Li J, Boer K, Liu X, Zhang Z, Vasquez C, Clark CT, Funckes K, Shankar K, Bonnet-Zahedi S, Siddiq M, Sepulveda Y, Suhandynata RT, Momper JD, Calabrese AN, George O, Stull F, Bardwell JCA. Directed evolution unlocks oxygen reactivity for a nicotine-degrading flavoenzyme. Nat Chem Biol 2023; 19:1406-1414. [PMID: 37770699 PMCID: PMC10611581 DOI: 10.1038/s41589-023-01426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.
Collapse
Affiliation(s)
- Mark Dulchavsky
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Rishav Mitra
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Wu
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Li
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Karli Boer
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Xiaomeng Liu
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Cristian Vasquez
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | | | - Kaitrin Funckes
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Selene Bonnet-Zahedi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mohammad Siddiq
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yadira Sepulveda
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
| | - Raymond T Suhandynata
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Jeremiah D Momper
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, S chool of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zhang K, Yin M, Lei S, Zhang H, Yin X, Niu Q. Bacillus sp. YC7 from intestines of Lasioderma serricorne degrades nicotine due to nicotine dehydrogenase. AMB Express 2023; 13:87. [PMID: 37603100 PMCID: PMC10441963 DOI: 10.1186/s13568-023-01593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
A large number of nicotine-containing wastes produced during the tobacco manufacturing process are seriously harmful to the environment and human health. The degradation and transformation of nicotine-containing environmental contaminants to harmless substances has become an urgent requirement. Lasioderma serricorne can grow and reproduce in nicotine-rich sources, and their intestinal microbiota show promising potential to degrade and utilize nicotine. The purpose of this study is to screen and identify nicotine-degrading bacteria from the intestines of L. serricorne and explore their degradation characteristics. A dominant strain, YC7, with significant nicotine degradation capabilities was isolated from the intestines of L. serricorne. The strain was identified as Bacillus using a polyphasic approach. The test results showed it can produce multiple enzymes that include β-glucosidase, cellulase, proteases, and amylases. The nicotine-degrading bacteria were functionally annotated using databases. Nicotine dehydrogenase (NDH) was found by combining an activity tracking test and protein mass spectrometry analysis. The YC-7 NDH in the pathway was molecularly docked and functionally verified via the gene knockdown method. The binding ability of nicotine to nicotine-degrading enzymes was investigated using molecular docking. A high-efficiency nicotine-degrading bacteria, YC-7, was isolated and screened from tobacco, and the gene functions related to degradation were verified. This investigation provides a new hypothesis for screening nicotine-degrading bacteria and increases our knowledge of potential nicotine-degrading microbial sources.
Collapse
Affiliation(s)
- Ke Zhang
- College of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, 90 Wangcheng Road, Luoyang, 471023, Henan, China
| | - Mingshen Yin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Shengwei Lei
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Hongxin Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xiaoyan Yin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Qiuhong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
3
|
Choudhary V, Wu K, Zhang Z, Dulchavsky M, Barkman T, Bardwell JCA, Stull F. The enzyme pseudooxynicotine amine oxidase from Pseudomonas putida S16 is not an oxidase, but a dehydrogenase. J Biol Chem 2022; 298:102251. [PMID: 35835223 PMCID: PMC9396064 DOI: 10.1016/j.jbc.2022.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
The soil-dwelling bacterium Pseudomonas putida S16 can survive on nicotine as its sole carbon and nitrogen source. The enzymes nicotine oxidoreductase (NicA2) and pseudooxynicotine amine oxidase (Pnao), both members of the flavin containing amine oxidase family, catalyze the first two steps in the nicotine catabolism pathway. Our laboratory has previously shown that, contrary to other members of its enzyme family, NicA2 is actually a dehydrogenase that uses a cytochrome c protein (CycN) as its electron acceptor. The natural electron acceptor for Pnao is unknown; however, within the P. putida S16 genome, pnao forms an operon with cycN and nicA2, leading us to hypothesize that Pnao may also be a dehydrogenase that uses CycN as its electron acceptor. Here we characterized the kinetic properties of Pnao and show that Pnao is poorly oxidized by O2, but can be rapidly oxidized by CycN, indicating that Pnao indeed acts as a dehydrogenase that uses CycN as its oxidant. Comparing steady-state kinetics with transient kinetic experiments revealed that product release primarily limits turnover by Pnao. We also resolved the crystal structure of Pnao at 2.60 Å, which shows that Pnao has a similar structural fold as NicA2. Furthermore, rigid-body docking of the structure of CycN with Pnao and NicA2 identified a potential conserved binding site for CycN on these two enzymes. Taken together, our results demonstrate that although Pnao and NicA2 show a high degree of similarity to flavin containing amine oxidases that use dioxygen directly, both enzymes are actually dehydrogenases.
Collapse
Affiliation(s)
- Vishakha Choudhary
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Kevin Wu
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Mark Dulchavsky
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Todd Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA.
| |
Collapse
|
4
|
Improving the kinetic parameters of nicotine oxidizing enzymes by homologous structure comparison and rational design. Arch Biochem Biophys 2022; 718:109122. [DOI: 10.1016/j.abb.2022.109122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/17/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
|
5
|
Yildiz I. Computational Analysis of the Nicotine Oxidoreductase Mechanism by the ONIOM Method. ACS OMEGA 2021; 6:22422-22428. [PMID: 34497931 PMCID: PMC8412962 DOI: 10.1021/acsomega.1c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Nicotine oxidoreductase (NicA2) is a monoamine oxidase (MAO)-based flavoenzyme that catalyzes the oxidation of S-nicotine into N-methylmyosmine. Due to its nanomolar binding affinity toward nicotine, it is seen as an ideal candidate for the treatment of nicotine addiction. Based on the crystal structure of the substrate-bound enzyme, hydrophobic interactions mainly govern the binding of the substrate in the active site through Trp108, Trp364, Trp427, and Leu217 residues. In addition, Tyr308 forms H-bonding with the pyridyl nitrogen of the substrate. Experimental and computational studies support the hydride transfer mechanism for MAO-based enzymes. In this mechanism, a hydride ion transfers from the substrate to the flavin cofactor. In this study, computational models involving the ONIOM method were formulated to study the hydride transfer mechanism based on the crystal structure of the enzyme-substrate complex. The geometry and energetics of the hydride transfer mechanism were analyzed, and the roles of active site residues were highlighted.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Chemistry Department, Khalifa
University, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Dulchavsky M, Clark CT, Bardwell JCA, Stull F. A cytochrome c is the natural electron acceptor for nicotine oxidoreductase. Nat Chem Biol 2021; 17:344-350. [PMID: 33432238 PMCID: PMC7904663 DOI: 10.1038/s41589-020-00712-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Nicotine oxidoreductase (NicA2), a member of the flavin-containing amine oxidase family, is of medical relevance as it shows potential as a therapeutic to aid cessation of smoking due to its ability to oxidize nicotine into a non-psychoactive metabolite. However, the use of NicA2 in this capacity is stymied by its dismal O2-dependent activity. Unlike other enzymes in the amine oxidase family, NicA2 reacts very slowly with O2, severely limiting its nicotine-degrading activity. Instead of using O2 as an oxidant, we discovered that NicA2 donates electrons to a cytochrome c, which means that NicA2 is actually a dehydrogenase. This is surprising, as enzymes of the flavin-containing amine oxidase family were invariably thought to use O2 as an electron acceptor. Our findings establish new perspectives for engineering this potentially useful therapeutic and prompt a reconsideration of the term 'oxidase' in referring to members of the flavin-containing amine 'oxidase' family.
Collapse
Affiliation(s)
- Mark Dulchavsky
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | | | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA., or
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA., or
| |
Collapse
|
7
|
Tararina MA, Dam KK, Dhingra M, Janda KD, Palfey BA, Allen KN. Fast Kinetics Reveals Rate-Limiting Oxidation and the Role of the Aromatic Cage in the Mechanism of the Nicotine-Degrading Enzyme NicA2. Biochemistry 2021; 60:259-273. [PMID: 33464876 DOI: 10.1021/acs.biochem.0c00855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Pseudomonas putida, the flavoprotein nicotine oxidoreductase (NicA2) catalyzes the oxidation of (S)-nicotine to N-methyl-myosmine, which is nonenzymatically hydrolyzed to pseudooxynicotine. Structural analysis reveals a monoamine oxidase (MAO)-like fold with a conserved FAD-binding domain and variable substrate-binding domain. The flavoenzyme has a unique variation of the classic aromatic cage with flanking residue pair W427/N462. Previous mechanistic studies using O2 as the oxidizing substrate show that NicA2 has a low apparent Km of 114 nM for (S)-nicotine with a very low apparent turnover number (kcat of 0.006 s-1). Herein, the mechanism of NicA2 was analyzed by transient kinetics. Single-site variants of W427 and N462 were used to probe the roles of these residues. Although several variants had moderately higher oxidase activity (7-12-fold), their reductive half-reactions using (S)-nicotine were generally significantly slower than that of wild-type NicA2. Notably, the reductive half-reaction of wild-type NicA2 is 5 orders of magnitude faster than the oxidative half-reaction with an apparent pseudo-first-order rate constant for the reaction of oxygen similar to kcat. X-ray crystal structures of the N462V and N462Y/W427Y variants complexed with (S)-nicotine (at 2.7 and 2.3 Å resolution, respectively) revealed no significant active-site rearrangements. A second substrate-binding site was identified in N462Y/W427Y, consistent with observed substrate inhibition. Together, these findings elucidate the mechanism of a flavoenzyme that preferentially oxidizes tertiary amines with an efficient reductive half-reaction and a very slow oxidative half-reaction when O2 is the oxidizing substrate, suggesting that the true oxidizing agent is unknown.
Collapse
Affiliation(s)
- Margarita A Tararina
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States
| | - Katie K Dam
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Manaswni Dhingra
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | - Bruce A Palfey
- Department of Biological Chemistry, University of Michigan, 5220E MSRB III 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Karen N Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States.,Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
An active site mutation in 6-hydroxy-l-Nicotine oxidase from Arthrobacter nicotinovorans changes the substrate specificity in favor of (S)-nicotine. Arch Biochem Biophys 2020; 692:108520. [DOI: 10.1016/j.abb.2020.108520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022]
|
9
|
Li J, Shen M, Chen Z, Pan F, Yang Y, Shu M, Chen G, Jiao Y, Zhang F, Linhardt RJ, Zhong W. Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein Expr Purif 2020; 178:105767. [PMID: 32987121 DOI: 10.1016/j.pep.2020.105767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023]
Abstract
Nicotine contamination in tobacco waste effluent (TWE) from tobacco industry is a serious threat to public health and environment. Microbial degradation is an impending approach to remove nicotine and transform it into some other high value chemicals. Pseudomonas sp. JY-Q exhibits high efficiency of degradation, which can degrade 5 g/L of nicotine within 24 h. In strain JY-Q, we found the co-occurrence of two homologous key enzymes NicA2 and Nox, which catalyze nicotine to N-methylmyosmine, and then to pseudooxylnicotine via simultaneous hydrolysis. In this study, recombinant NicA2 and Nox were expressed in E. coli BL21(DE3) and purified. In vitro, the activity of recombinant NicA2 and Nox was accelerated by adding co-factor NAD+, suggesting that they worked as dehydrogenases. The optimal reaction conditions, substrate affinity, catabolism efficiency, pH-stability and thermal-stability were determined. Nox showed lower efficiency, but at a higher stability level than NicA2. Nox exhibited wider pH range and higher temperature as optimal conditions for the enzymatic reaction. In addition, The Nox showed higher thermo-stability and acid-stability than that of NicA2. The study on enzymatic reaction kinetics showed that Nox had a lower Km and higher substrate affinity than NicA2. These results suggest that Nox plays more significant role than NicA2 in nicotine degradation in TWE, which usually is processed at low pH (4-5) and high temperature (above 40 °C). Genetic engineering is required to enhance the affinity and suitability of NicA2 for an increased additive effect on homologous NicA2 and Nox in strain JY-Q.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mingjie Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Guoqing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yang Jiao
- Technology Center, Hangzhou Liqun Environmental Protection Paper Co., Ltd., Hangzhou, 310018, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
10
|
Molecular Deceleration Regulates Toxicant Release to Prevent Cell Damage in Pseudomonas putida S16 (DSM 28022). mBio 2020; 11:mBio.02012-20. [PMID: 32873764 PMCID: PMC7468206 DOI: 10.1128/mbio.02012-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The underlying molecular mechanisms of flavin-dependent amine oxidases remain relatively poorly understood, even though many of these enzymes have been reported. The nicotine oxidoreductase NicA2 is a crucial enzyme for the first step of nicotine degradation in Pseudomonas putida S16 (DSM 28022). Here, we present the crystal structure of a ternary complex comprising NicA2 residues 21 to 482, flavin adenine dinucleotide (FAD), and nicotine at 2.25 Å resolution. Unlike other, related structures, NicA2 does not have an associated diacyl glycerophospholipid, wraps its substrate more tightly, and has an intriguing exit passage in which nine bulky amino acid residues occlude the release of its toxic product, pseudooxynicotine (PN). The replacement of these bulky residues by amino acids with small side chains effectively increases the catalytic turnover rate of NicA2. Our results indicate that the passage in wild-type NicA2 effectively controls the rate of PN release and thus prevents its rapid intracellular accumulation. It gives ample time for PN to be converted to less-harmful substances by downstream enzymes such as pseudooxynicotine amine oxidase (Pnao) before its accumulation causes cell damage or even death. The temporal metabolic regulation mode revealed in this study may shed light on the production of cytotoxic compounds.IMPORTANCE Flavin-dependent amine oxidases have received extensive attention because of their importance in drug metabolism, Parkinson's disease, and neurotransmitter catabolism. However, the underlying molecular mechanisms remain relatively poorly understood. Here, combining the crystal structure of NicA2 (an enzyme in the first step of the bacterial nicotine degradation pathway in Pseudomonas putida S16 (DSM 28022)), biochemical analysis, and mutant construction, we found an intriguing exit passage in which bulky amino acid residues occlude the release of the toxic product of NicA2, in contrast to other, related structures. The selective product exportation register for NicA2 has proven to be beneficial to cell growth. Those seeking to produce cytotoxic compounds could greatly benefit from the use of such an export register mechanism.
Collapse
|
11
|
Tararina MA, Allen KN. Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. J Mol Biol 2020; 432:3269-3288. [PMID: 32198115 DOI: 10.1016/j.jmb.2020.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
The flavin-dependent amine oxidase (FAO) superfamily consists of over 9000 nonredundant sequences represented in all domains of life. Of the thousands of members identified, only 214 have been functionally annotated to date, and 40 unique structures are represented in the Protein Data Bank. The few functionally characterized members share a catalytic mechanism involving the oxidation of an amine substrate through transfer of a hydride to the FAD cofactor, with differences observed in substrate specificities. Previous studies have focused on comparing a subset of superfamily members. Here, we present a comprehensive analysis of the FAO superfamily based on reaction mechanism and substrate recognition. Using a dataset of 9192 sequences, a sequence similarity network, and subsequently, a genome neighborhood network were constructed, organizing the superfamily into eight subgroups that accord with substrate type. Likewise, through phylogenetic analysis, the evolutionary relationship of subgroups was determined, delineating the divergence between enzymes based on organism, substrate, and mechanism. In addition, using sequences and atomic coordinates of 22 structures from the Protein Data Bank to perform sequence and structural alignments, active-site elements were identified, showing divergence from the canonical aromatic-cage residues to accommodate large substrates. These specificity determinants are held in a structural framework comprising a core domain catalyzing the oxidation of amines with an auxiliary domain for substrate recognition. Overall, analysis of the FAO superfamily reveals a modular fold with cofactor and substrate-binding domains allowing for diversity of recognition via insertion/deletions. This flexibility allows facile evolution of new activities, as shown by reinvention of function between subfamilies.
Collapse
Affiliation(s)
- Margarita A Tararina
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Karen N Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Thisted T, Biesova Z, Walmacq C, Stone E, Rodnick-Smith M, Ahmed SS, Horrigan SK, Van Engelen B, Reed C, Kalnik MW. Optimization of a nicotine degrading enzyme for potential use in treatment of nicotine addiction. BMC Biotechnol 2019; 19:56. [PMID: 31375100 PMCID: PMC6679477 DOI: 10.1186/s12896-019-0551-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Smoking and tobacco use continue to be the largest preventable causes of death globally. A novel therapeutic approach has recently been proposed: administration of an enzyme that degrades nicotine, the main addictive component of tobacco, minimizing brain exposure and reducing its reinforcing effects. Pre-clinical proof of concept has been previously established through dosing the amine oxidase NicA2 from Pseudomonas putida in rat nicotine self-administration models of addiction. RESULTS This paper describes efforts towards optimizing NicA2 for potential therapeutic use: enhancing potency, improving its pharmacokinetic profile, and attenuating immunogenicity. Libraries randomizing residues located in all 22 active site positions of NicA2 were screened. 58 single mutations with 2- to 19-fold enhanced catalytic activity compared to wt at 10 μM nicotine were identified. A novel nicotine biosensor assay allowed efficient screening of the many primary hits for activity at nicotine concentrations typically found in smokers. 10 mutants with improved activity in rat serum at or below 250 nM were identified. These catalytic improvements translated to increased potency in vivo in the form of further lowering of nicotine blood levels and nicotine accumulation in the brains of Sprague-Dawley rats. Examination of the X-ray crystal structure suggests that these mutants may accelerate the rate limiting re-oxidation of the flavin adenine dinucleotide cofactor by enhancing molecular oxygen's access. PEGylation of NicA2 led to prolonged serum half-life and lowered immunogenicity observed in a human HLA DR4 transgenic mouse model, without impacting nicotine degrading activity. CONCLUSIONS Systematic mutational analysis of the active site of the nicotine-degrading enzyme NicA2 has yielded 10 variants that increase the catalytic activity and its effects on nicotine distribution in vivo at nicotine plasma concentrations found in smokers. In addition, PEGylation substantially increases circulating half-life and reduces the enzyme's immunogenic potential. Taken together, these results provide a viable path towards generation of a drug candidate suitable for human therapeutic use in treating nicotine addiction.
Collapse
Affiliation(s)
- Thomas Thisted
- Antidote Therapeutics, Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
| | - Zuzana Biesova
- Antidote Therapeutics, Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
| | - Celine Walmacq
- Antidote Therapeutics, Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
| | - Everett Stone
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX USA
| | - Max Rodnick-Smith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX USA
| | - Shaheda S. Ahmed
- Alcyomics Ltd, Bulman House, Regent Centre, Gosforth, Newcastle upon Tyne, NE3 3LS UK
| | | | - Bo Van Engelen
- Antidote Therapeutics, Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
- Maastricht University, P. Debyeplein 1, 6229 HA, Maastricht, NL USA
| | - Charles Reed
- Antidote Therapeutics, Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
| | - Matthew W. Kalnik
- Antidote Therapeutics, Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
| |
Collapse
|
13
|
Fitzpatrick PF, Dougherty V, Subedi B, Quilantan J, Hinck CS, Lujan AI, Tormos JR. Mechanism of the Flavoprotein d-6-Hydroxynicotine Oxidase: Substrate Specificity, pH and Solvent Isotope Effects, and Roles of Key Active-Site Residues. Biochemistry 2019; 58:2534-2541. [PMID: 31046245 PMCID: PMC6786761 DOI: 10.1021/acs.biochem.9b00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The flavoprotein d-6-hydroxynicotine oxidase catalyzes an early step in the oxidation of ( R)-nicotine, the oxidation of a carbon-nitrogen bond in the pyrrolidine ring of ( R)-6-hydroxynicotine. The enzyme is a member of the vanillyl alcohol oxidase/ p-cresol methylhydroxylase family of flavoproteins. The effects of substrate modifications on the steady-state and rapid-reaction kinetic parameters are not consistent with the quinone-methide mechanism of p-cresol methylhydroxylase. There is no solvent isotope effect on the kcat/ Kamine value with either ( R)-6-hydroxynicotine or the slower substrate ( R)-6-hydroxynornicotine. The effect of pH on the rapid-reaction kinetic parameters establishes that only the neutral form of the substrate and the correctly protonated form of the enzyme bind. The active-site residues Lys348, Glu350, and Glu352 are all properly positioned for substrate binding. The K348M substitution has only a small effect on the kinetic parameters; the E350A and E350Q substitutions decrease the kcat/ Kamine value by ∼20- and ∼220-fold, respectively, and the E352Q substitution decreases this parameter ∼3800-fold. The kcat/ Kamine-pH profile is bell-shaped. The p Ka values in that profile are altered by replacement of ( R)-6-hydroxynicotine with ( R)-6-hydroxynornicotine as the substrate and by the substitutions for Glu350 and Glu352, although the profiles remain bell-shaped. The results are consistent with a network of hydrogen-bonded residues in the active site being involved in binding the neutral form of the amine substrate, followed by the transfer of a hydride from the amine to the flavin.
Collapse
Affiliation(s)
- Paul F. Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Vi Dougherty
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Bishnu Subedi
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Jesus Quilantan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Cynthia S. Hinck
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Andreina I. Lujan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Jose R. Tormos
- Department of Chemistry, St. Mary’s University, San Antonio, Texas 78228, United States
| |
Collapse
|
14
|
X-Ray Crystallography in Structure-Function Characterization of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:81-103. [DOI: 10.1007/978-981-13-7709-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Fitzpatrick PF. The enzymes of microbial nicotine metabolism. Beilstein J Org Chem 2018; 14:2295-2307. [PMID: 30202483 PMCID: PMC6122326 DOI: 10.3762/bjoc.14.204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Because of nicotine's toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon-nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
16
|
Pentel PR, Raleigh MD, LeSage MG, Thisted T, Horrigan S, Biesova Z, Kalnik MW. The nicotine-degrading enzyme NicA2 reduces nicotine levels in blood, nicotine distribution to brain, and nicotine discrimination and reinforcement in rats. BMC Biotechnol 2018; 18:46. [PMID: 30041697 PMCID: PMC6056991 DOI: 10.1186/s12896-018-0457-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The bacterial nicotine-degrading enzyme NicA2 isolated from P. putida was studied to assess its potential use in the treatment of tobacco dependence. RESULTS Rats were pretreated with varying i.v. doses of NicA2, followed by i.v. administration of nicotine at 0.03 mg/kg. NicA2 had a rapid onset of action reducing blood and brain nicotine concentrations in a dose-related manner, with a rapid onset of action. A 5 mg/kg NicA2 dose reduced the nicotine concentration in blood by > 90% at 1 min after the nicotine dose, compared to controls. Brain nicotine concentrations were reduced by 55% at 1 min and 92% at 5 min post nicotine dose. To evaluate enzyme effects at a nicotine dosing rate equivalent to heavy smoking, rats pretreated with NicA2 at 10 mg/kg were administered 5 doses of nicotine 0.03 mg/kg i.v. over 40 min. Nicotine levels in blood were below the assay detection limit 3 min after either the first or fifth nicotine dose, and nicotine levels in brain were reduced by 82 and 84%, respectively, compared to controls. A 20 mg/kg NicA2 dose attenuated nicotine discrimination and produced extinction of nicotine self-administration (NSA) in most rats, or a compensatory increase in other rats, when administered prior to each daily NSA session. In rats showing compensation, increasing the NicA2 dose to 70 mg/kg resulted in extinction of NSA. An enzyme construct with a longer duration of action, via fusion with an albumin-binding domain, similarly reduced NSA in a 23 h nicotine access model at a dose of 70 mg/kg. CONCLUSIONS These data extend knowledge of NicA2's effects on nicotine distribution to brain and its ability to attenuate addiction-relevant behaviors in rats and support its further investigation as a treatment for tobacco use disorder.
Collapse
Affiliation(s)
- Paul R. Pentel
- University of Minnesota, 100 Church St. S.E, Minneapolis, MN 55455 USA
| | - Michael D. Raleigh
- Minneapolis Medical Research Foundation, 701 Park Ave, Minneapolis, MN 55415 USA
| | - Mark G. LeSage
- Minneapolis Medical Research Foundation, 701 Park Ave, Minneapolis, MN 55415 USA
| | - Thomas Thisted
- Antidote Therapeutics Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
| | | | - Zuzana Biesova
- Antidote Therapeutics Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
| | - Matthew W. Kalnik
- Antidote Therapeutics Inc, 708 Quince Orchard Road, Suite 250-C, Gaithersburg, MD 20878 USA
| |
Collapse
|
17
|
Tararina MA, Xue S, Smith LC, Muellers SN, Miranda PO, Janda KD, Allen KN. Crystallography Coupled with Kinetic Analysis Provides Mechanistic Underpinnings of a Nicotine-Degrading Enzyme. Biochemistry 2018; 57:3741-3751. [PMID: 29812904 PMCID: PMC6295333 DOI: 10.1021/acs.biochem.8b00384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nicotine oxidoreductase (NicA2) is a bacterial flavoenzyme, which catalyzes the first step of nicotine catabolism by oxidizing S-nicotine into N-methyl-myosmine. It has been proposed as a biotherapeutic for nicotine addiction because of its nanomolar substrate binding affinity. The first crystal structure of NicA2 has been reported, establishing NicA2 as a member of the monoamine oxidase (MAO) family. However, substrate specificity and structural determinants of substrate binding and/or catalysis have not been explored. Herein, analysis of the pH-rate profile, single-turnover kinetics, and binding data establish that pH does not significantly affect the catalytic rate and product release is not rate-limiting. The X-ray crystal structure of NicA2 with S-nicotine refined to 2.65 Å resolution reveals a hydrophobic binding site with a solvent exclusive cavity. Hydrophobic interactions predominantly orient the substrate, promoting the binding of a deprotonated species and supporting a hydride-transfer mechanism. Notably, NicA2 showed no activity against neurotransmitters oxidized by the two isoforms of human MAO. To further probe the substrate range of NicA2, enzyme activity was evaluated using a series of substrate analogues, indicating that S-nicotine is the optimal substrate and substitutions within the pyridyl ring abolish NicA2 activity. Moreover, mutagenesis and kinetic analysis of active-site residues reveal that removal of a hydrogen bond between the pyridyl ring of S-nicotine and the hydroxyl group of T381 has a 10-fold effect on KM, supporting the role of this bond in positioning the catalytically competent form of the substrate. Together, crystallography combined with kinetic analysis provides a deeper understanding of this enzyme's remarkable specificity.
Collapse
Affiliation(s)
- Margarita A. Tararina
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States
| | - Song Xue
- Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology
| | - Lauren C. Smith
- Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology
| | - Samantha N. Muellers
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Pedro O. Miranda
- Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology
| | - Kim D. Janda
- Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology
- Worm Institute for Medical Research (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, BCC-582, La Jolla, California 92037, United States
| | - Karen N. Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
18
|
Xue S, Kallupi M, Zhou B, Smith LC, Miranda PO, George O, Janda KD. An enzymatic advance in nicotine cessation therapy. Chem Commun (Camb) 2018; 54:1686-1689. [PMID: 29308799 PMCID: PMC6231713 DOI: 10.1039/c7cc09134f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A nicotine-degrading enzyme termed NicA2 was altered (NicA2-J1) through fusion of an albumin binding domain to increase its half-life. Examination of NicA2-J1 in vivo demonstrated a complete blockade of brain nicotine access, which in turn blunted nicotine's psychoactive effects. These data further support development of pharmacokinetic nicotine cessation therapeutics.
Collapse
Affiliation(s)
- Song Xue
- Departments of Chemistry, Immunology, Microbiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|