1
|
Brenneman DE, Petkanas D, Ippolito M, Ward SJ. Effect of Fatty Acyl Composition for Lysophosphatidylinositol on Neuroinflammatory Responses in Primary Neuronal Cultures. J Mol Neurosci 2025; 75:35. [PMID: 40085305 DOI: 10.1007/s12031-025-02326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome-3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high-content fluorescent imaging. Major endogenous LPI fatty acyl structures consisting of 16:0, 18:0, 18:1, or 20:4 were compared for their effects on IL-1b, NLRP3, and GPR55 immunoreactive areas of neurites and cell bodies after a 6-h treatment. Among these four LPI structures, only LPI-20:4 treatment produced increases in immunoreactive areas for GPR55, NLRP3, and IL-1b in DRG and hippocampal neurites. In contrast, all other LPI structures tested produced a decrease in all of these inflammatory immunoreactive areas in both neurites and cell bodies. Additional studies with LPI-20:4 treatment indicated that IL-6, IL-18, and TNF-α were significantly increased in neurites of DRG and hippocampal cultures. However, oleoyl-lysophosphatidylinositol (LPI-18:1) treatment produced decreases in these three cytokines. Using the viability dye Alamar blue, LPI-20:4 was shown to produce concentration-dependent decreases, whereas all other endogenous LPI structures produced increases with this assay. These studies indicate that fatty acyl structure is the major determinant of LPI for neuroinflammatory responses in DRG and hippocampal cultures, with LPI-20:4 showing pro-inflammatory effects and all other endogenous LPIs tested exhibiting anti-inflammatory responses.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - Dean Petkanas
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Michael Ippolito
- Center for Substance Abuse Research, Department of Neural Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Neural Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
2
|
Brenneman DE, Petkanas D, Ippolito M, Ward SJ. Effect of Fatty Acyl Composition for Lysophosphatidylinositol on Neuroinflammatory Responses in Primary Neuronal Cultures. RESEARCH SQUARE 2025:rs.3.rs-5742954. [PMID: 39866868 PMCID: PMC11760249 DOI: 10.21203/rs.3.rs-5742954/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging. Major endogenous LPI fatty acyl structures consisting of 16:0, 18:0, 18:1 or 20:4 were compared for their effects on IL-1b, NLRP3 and GPR55 immunoreactive areas of neurites and cell bodies after a 6-hour treatment. Among these four LPI structures, only LPI-20:4 treatment produced increases in immunoreactive areas for GPR55, NLRP3 and IL-1b in DRG and hippocampal neurites. In contrast, all other LPI structures tested produced a decrease in all of these inflammatory immunoreactive areas in both neurites and cell bodies. Additional studies with LPI-20:4 treatment indicated that IL-6, IL-18 and TNF-a were significantly increased in neurites of DRG and hippocampal cultures. However, oleoyl-lysophosphatidylinositol (LPI-18:1) treatment produced decreases in these three cytokines. Using the viability dye alamar blue, LPI-20:4 was shown to produce concentration-dependent decreases, whereas all other endogenous LPI structures produced increases with this assay. These studies indicate that fatty acyl structure is the major determinant of LPI for neuroinflammatory responses in DRG and hippocampal cultures, with LPI-20:4 showing pro-inflammatory effects and all other endogenous LPIs tested exhibited anti-inflammatory responses.
Collapse
Affiliation(s)
| | - Dean Petkanas
- Kannalife Sciences, Inc Pennsylvania Biotechnology Center
| | | | | |
Collapse
|
3
|
Garisetti V, Varughese RE, Anandamurthy A, Haribabu J, Dasararaju G. Exploring potential GPR55 agonists using virtual screening, molecular docking and dynamics simulation studies. J Biomol Struct Dyn 2024:1-13. [PMID: 39648351 DOI: 10.1080/07391102.2024.2434716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 12/10/2024]
Abstract
GPR55, an orphan GPCR, holds significance in the context of neurological disorders and its activation is important for regulating neurological responses. This has led us to uncover and explore a set of ligands which may act as potential agonists. We have predicted the GPR55 structural model followed by molecular docking, dynamics simulation studies, free energy landscape and MMPBSA analyses to study the dynamic nature of GPR55 in the presence of different ligands. We initially carried out structure-based virtual screening of a dataset from ChemDiv Database against the GPR55 model. Based on the docking results, it was observed that thiazole and triazole derivatives were present among the top hits and notably, two compounds - one thiazole (lead1) and one triazole (lead2) derivative were shortlisted. In addition, as we are working on the design, synthesis, structural and functional properties of several thiazole and triazole compounds, we have attempted to study the binding potential of two compounds SVS1 (thiazole derivative) and SVS2 (triazole derivative) with GPR55. The synthesis and structural aspects of SVS1 and SVS2 were previously reported by our team. Further, we have included a known agonist O-1602 in the present study for comparative analysis. All the compounds showed promising interactions with GPR55 during molecular dynamics simulations. Our findings suggest that lead1, lead2, SVS1 and SVS2 have the potential to serve as GPR55 agonists and the study throws light on the importance of thiazole and triazole moieties in the ligands. This offers a promising avenue for the development of new therapies for neurological disorders.
Collapse
Affiliation(s)
- Vasavi Garisetti
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Roslin Elsa Varughese
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Arthikasree Anandamurthy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Copiapo, Atacama, Chile
- Chennai Institute of Technology (CIT), Chennai, India
| | - Gayathri Dasararaju
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Korkus E, Szustak M, Madaj R, Chworos A, Drzazga A, Koziołkiewicz M, Dąbrowski G, Czaplicki S, Konopka I, Gendaszewska-Darmach E. Trans-palmitoleic acid, a dairy fat biomarker, stimulates insulin secretion and activates G protein-coupled receptors with a different mechanism from the cis isomer. Food Funct 2023. [PMID: 37368452 DOI: 10.1039/d2fo03412c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Dietary trans-palmitoleic acid (trans 16:1n-7, tPOA), a biomarker for high-fat dairy product intake, has been associated with a lower risk of type 2 diabetes mellitus (T2DM) in some cross-sectional and prospective epidemiological studies. Here, we investigated the insulin secretion-promoting activity of tPOA and compared them with the effects evoked by the cis-POA isomer (cPOA), an endogenous lipokine biosynthesized in the liver and adipose tissue, and found in some natural food sources. The debate about the positive and negative relationships of those two POA isomers with metabolic risk factors and the underlying mechanisms is still going on. Therefore, we examined the potency of both POA isomers to potentiate insulin secretion in murine and human pancreatic β cell lines. We also investigated whether POA isomers activate G protein-coupled receptors proposed as potential targets for T2DM treatment. We show that tPOA and cPOA augment glucose-stimulated insulin secretion (GSIS) to a similar extent; however, their insulin secretagogue activity is associated with different signaling pathways. We also performed ligand docking and molecular dynamics simulations to predict the preferred orientation of POA isomers and the strength of association between those two fatty acids and GPR40, GPR55, GPR119, and GPR120 receptors. Overall, this study provides insight into the bioactivity of tPOA and cPOA toward selected GPCR functions, indicating them as targets responsible for the insulin secretagogue action of POA isomers. It reveals that both tPOA and cPOA may promote insulin secretion and subsequently regulate glucose homeostasis.
Collapse
Affiliation(s)
- Eliza Korkus
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| | - Marcin Szustak
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| | - Rafal Madaj
- Division of Bioorganic Chemistry Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Arkadiusz Chworos
- Division of Bioorganic Chemistry Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Anna Drzazga
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| | - Maria Koziołkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| | - Grzegorz Dąbrowski
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Sylwester Czaplicki
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Iwona Konopka
- Faculty of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
| |
Collapse
|
5
|
Stella N. THC and CBD: Similarities and differences between siblings. Neuron 2023; 111:302-327. [PMID: 36638804 PMCID: PMC9898277 DOI: 10.1016/j.neuron.2022.12.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) and its sibling, cannabidiol (CBD), are produced by the same Cannabis plant and have similar chemical structures but differ dramatically in their mechanisms of action and effects on brain functions. Both THC and CBD exhibit promising therapeutic properties; however, impairments and increased incidence of mental health diseases are associated with acute and chronic THC use, respectively, and significant side effects are associated with chronic use of high-dose CBD. This review covers recent molecular and preclinical discoveries concerning the distinct mechanisms of action and bioactivities of THC and CBD and their impact on human behavior and diseases. These discoveries provide a foundation for the development of cannabinoid-based therapeutics for multiple devastating diseases and to assure their safe use in the growing legal market of Cannabis-based products.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Department Psychiatry and Behavioral Sciences, Center for Cannabis Research, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Figuerola-Asencio L, Morales P, Zhao P, Hurst DP, Sayed SS, Colón KL, Gómez-Cañas M, Fernández-Ruiz J, Croatt MP, Reggio PH, Abood ME, Jagerovic N. Thienopyrimidine Derivatives as GPR55 Receptor Antagonists: Insight into Structure-Activity Relationship. ACS Med Chem Lett 2022; 14:18-25. [PMID: 36655130 PMCID: PMC9841585 DOI: 10.1021/acsmedchemlett.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
GPR55 is an orphan G-protein coupled receptor involved in various pathophysiological conditions. However, there are only a few noncannabinoid GPR55 ligands reported so far. The lack of potent and selective GPR55 ligands precludes a deep exploration of this receptor. The studies presented here focused on a thienopyrimidine scaffold based on the GPR55 antagonist ML192, previously discovered by high-throughput screening. The GPR55 activities of the new synthesized compounds were assessed using β-arrestin recruitment assays in Chinese hamster ovary cells overexpressing human GPR55. Some derivatives were identified as GPR55 antagonists with functional efficacy and selectivity versus CB1 and CB2 cannabinoid receptors.
Collapse
Affiliation(s)
- Laura Figuerola-Asencio
- Instituto
de Química Médica, Consejo
Superior de Investigaciones Científicas, 28006Madrid, Spain
| | - Paula Morales
- Instituto
de Química Médica, Consejo
Superior de Investigaciones Científicas, 28006Madrid, Spain
| | - Pingwei Zhao
- Center
for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Dow P. Hurst
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States
| | - Sommayah S. Sayed
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States
| | - Katsuya L. Colón
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States
| | - María Gómez-Cañas
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, CIBERNED and IRYCIS, 28040Madrid, Spain
| | - Javier Fernández-Ruiz
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, CIBERNED and IRYCIS, 28040Madrid, Spain
| | - Mitchell P. Croatt
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States
| | - Patricia H. Reggio
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States,E-mail:
| | - Mary E. Abood
- Center
for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania19122, United States,E-mail:
| | - Nadine Jagerovic
- Instituto
de Química Médica, Consejo
Superior de Investigaciones Científicas, 28006Madrid, Spain,E-mail:
| |
Collapse
|
7
|
Lysophosphatidylcholine: Potential Target for the Treatment of Chronic Pain. Int J Mol Sci 2022; 23:ijms23158274. [PMID: 35955410 PMCID: PMC9368269 DOI: 10.3390/ijms23158274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
The bioactive lipid lysophosphatidylcholine (LPC), a major phospholipid component of oxidized low-density lipoprotein (Ox-LDL), originates from the cleavage of phosphatidylcholine by phospholipase A2 (PLA2) and is catabolized to other substances by different enzymatic pathways. LPC exerts pleiotropic effects mediated by its receptors, G protein-coupled signaling receptors, Toll-like receptors, and ion channels to activate several second messengers. Lysophosphatidylcholine (LPC) is increasingly considered a key marker/factor positively in pathological states, especially inflammation and atherosclerosis development. Current studies have indicated that the injury of nervous tissues promotes oxidative stress and lipid peroxidation, as well as excessive accumulation of LPC, enhancing the membrane hyperexcitability to induce chronic pain, which may be recognized as one of the hallmarks of chronic pain. However, findings from lipidomic studies of LPC have been lacking in the context of chronic pain. In this review, we focus in some detail on LPC sources, biochemical pathways, and the signal-transduction system. Moreover, we outline the detection methods of LPC for accurate analysis of each individual LPC species and reveal the pathophysiological implication of LPC in chronic pain, which makes it an interesting target for biomarkers and the development of medicine regarding chronic pain.
Collapse
|
8
|
Ceni C, Benko MJ, Mohamed KA, Poli G, Di Stefano M, Tuccinardi T, Digiacomo M, Valoti M, Laprairie RB, Macchia M, Bertini S. Novel Potent and Selective Agonists of the GPR55 Receptor Based on the 3-Benzylquinolin-2(1H)-One Scaffold. Pharmaceuticals (Basel) 2022; 15:ph15070768. [PMID: 35890067 PMCID: PMC9320067 DOI: 10.3390/ph15070768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
A growing body of evidence underlines the crucial role of GPR55 in physiological and pathological conditions. In fact, GPR55 has recently emerged as a therapeutic target for several diseases, including cancer and neurodegenerative and metabolic disorders. Several lines of evidence highlight GPR55′s involvement in the regulation of microglia-mediated neuroinflammation, although the exact molecular mechanism has not been yet elucidated. Nevertheless, there are only a limited number of selective GPR55 ligands reported in the literature. In this work, we designed and synthesized a series of novel GPR55 ligands based on the 3-benzylquinolin-2(1H)-one scaffold, some of which showed excellent binding properties (with Ki values in the low nanomolar range) and almost complete selectivity over cannabinoid receptors. The full agonist profile of all the new derivatives was assessed using the p-ERK activation assay and a computational study was conducted to predict the key interactions with the binding site of the receptor. Our data outline a preliminary structure–activity relationship (SAR) for this class of molecules at GPR55. Some of our compounds are among the most potent GPR55 agonists developed to date and could be useful as tools to validate this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Costanza Ceni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Michael J Benko
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Miriana Di Stefano
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
9
|
Morales P, Muller C, Jagerovic N, Reggio PH. Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators. Front Mol Biosci 2022; 9:841190. [PMID: 35281260 PMCID: PMC8914543 DOI: 10.3389/fmolb.2022.841190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Both metabotropic (CBRs) and ionotropic cannabinoid receptors (ICRs) have implications in a range of neurological disorders. The metabotropic canonical CBRs CB1 and CB2 are highly implicated in these pathological events. However, selective targeting at CB2 versus CB1 offers optimized pharmacology due to the absence of psychoactive outcomes. The ICR transient receptor potential vanilloid type 1 (TRPV1) has also been reported to play a role in CNS disorders. Thus, activation of both targets, CB2 and TRPV1, offers a promising polypharmacological strategy for the treatment of neurological events including analgesia and neuroprotection. This brief research report aims to identify chemotypes with a potential dual CB2/TRPV1 profile. For this purpose, we have rationalized key structural features for activation and performed virtual screening at both targets using curated chemical libraries.
Collapse
Affiliation(s)
- Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
10
|
Identification of G protein-coupled receptor 55 (GPR55) as a target of curcumin. NPJ Sci Food 2022; 6:4. [PMID: 35031622 PMCID: PMC8760322 DOI: 10.1038/s41538-021-00119-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
The identification of molecular targets of bioactive food components is important to understand the mechanistic aspect of their physiological functions. Here, we have developed a screening system that enables us to determine the activation of G protein-coupled receptors (GPCRs) by food components and have identified GPR55 as a target for curcumin. Curcumin activated GPR55 and induced serum-response element- and serum-response factor-mediated transcription, which were inhibited by Rho kinase and GPR55 antagonists. Both the methoxy group and the heptadienone moiety of curcumin were required for GPR55 activation. The F1905.47 residue of GPR55 was important for the interaction with curcumin. The curcumin-induced secretion of glucagon-like peptide-1 in GLUTag cells was inhibited by a GPR55 antagonist. These results indicate that expression screening is a useful system to identify GPCRs as targets of food components and strongly suggest that curcumin activates GPR55 as an agonist, which is involved in the physiological function of curcumin.
Collapse
|
11
|
Gish A, Wiart JF, Turpin E, Allorge D, Gaulier JM. État de l’art et intérêt des dosages plasmatiques des substances endocannabinoïdes et endocannabinoïdes-like. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Mosca MG, Mangini M, Cioffi S, Barba P, Mariggiò S. Peptide targeting of lysophosphatidylinositol-sensing GPR55 for osteoclastogenesis tuning. Cell Commun Signal 2021; 19:48. [PMID: 33902596 PMCID: PMC8073907 DOI: 10.1186/s12964-021-00727-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/20/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The G-protein-coupled receptor GPR55 has been implicated in multiple biological activities, which has fuelled interest in its functional targeting. Its controversial pharmacology and often species-dependent regulation have impacted upon the potential translation of preclinical data involving GPR55. RESULTS With the aim to identify novel GPR55 regulators, we have investigated lysophosphatidylinositol (LPI)-induced GPR55-mediated signal transduction. The expression system for wild-type and mutated GPR55 was HeLa cells silenced for their endogenous receptor by stable expression of a short-hairpin RNA specific for GPR55 5'-UTR, which allowed definition of the requirement of GPR55 Lys80 for LPI-induced MAPK activation and receptor internalisation. In RAW264.7 macrophages, GPR55 pathways were investigated by Gpr55 silencing using small-interfering RNAs, which demonstrated that LPI increased intracellular Ca2+ levels and induced actin filopodium formation through GPR55 activation. Furthermore, the LPI/GPR55 axis was shown to have an active role in osteoclastogenesis of precursor RAW264.7 cells induced by 'receptor-activator of nuclear factor kappa-β ligand' (RANKL). Indeed, this differentiation into mature osteoclasts was associated with a 14-fold increase in Gpr55 mRNA levels. Moreover, GPR55 silencing and antagonism impaired RANKL-induced transcription of the osteoclastogenesis markers: 'nuclear factor of activated T-cells, cytoplasmic 1', matrix metalloproteinase-9, cathepsin-K, tartrate-resistant acid phosphatase, and the calcitonin receptor, as evaluated by real-time PCR. Phage display was previously used to identify peptides that bind to GPR55. Here, the GPR55-specific peptide-P1 strongly inhibited osteoclast maturation of RAW264.7 macrophages, confirming its activity as a blocker of GPR55-mediated functions. Although osteoclast syncytium formation was not affected by pharmacological regulation of GPR55, osteoclast activity was dependent on GPR55 signalling, as shown with resorption assays on bone slices, where LPI stimulated and GPR55 antagonists inhibited bone erosion. CONCLUSIONS Our data indicate that GPR55 represents a target for development of novel therapeutic approaches for treatment of pathological conditions caused by osteoclast-exacerbated bone degradation, such as in osteoporosis or during establishment of bone metastases. Video abstract.
Collapse
Affiliation(s)
| | - Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Stefania Cioffi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy. .,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.
| |
Collapse
|
13
|
Abe J, Guy AT, Ding F, Greimel P, Hirabayashi Y, Kamiguchi H, Ito Y. Systematic synthesis of novel phosphoglycolipid analogues as potential agonists of GPR55. Org Biomol Chem 2020; 18:8467-8473. [PMID: 33063071 DOI: 10.1039/d0ob01756f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodopsin-like G protein-coupled receptor (GPCR) GPR55 is attracting attention as a pharmaceutical target, because of its relationship with various physiological and pathological events. Although GPR55 was initially deorphanized as a cannabinoid receptor, lysophosphatidylinositol (LPI) is now widely perceived to be an endogenous ligand of GPR55. Recently, lysophosphatidyl-β-d-glucoside (LPGlc) has been found to act on GPR55 to repel dorsal root ganglion (DRG) neurons. In this study, we designed and synthesized various LPGlc analogues having the squaryldiamide group as potential agonists of GPR55. By the axon turning assay, several analogues exhibited similar activities to that of LPGlc. These results will provide valuable information for understanding the mode of action of LPGlc and its analogues and for the discovery of potent and selective antagonists or agonists of GPR55.
Collapse
Affiliation(s)
- Junpei Abe
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Adam T Guy
- RIKEN Center for Brain Research, Wako, Saitama, 351-0198, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), SunYat-sen University, Guangzhou 510275, China
| | - Peter Greimel
- RIKEN Center for Brain Research, Wako, Saitama, 351-0198, Japan
| | | | | | - Yukishige Ito
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan and RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
14
|
Guy AT, Ding F, Abe J, Inoue M, Hirabayashi Y, Ito Y, Kamiguchi H, Greimel P. Lysolipid Chain Length Switches Agonistic to Antagonistic G Protein-Coupled Receptor Modulation. ACS Chem Neurosci 2020; 11:3635-3645. [PMID: 33053304 DOI: 10.1021/acschemneuro.0c00521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of lysolipid-sensitive G protein-coupled receptors (GPCR) depends not only on lysolipid class but also on the length and degree of saturation of their respective hydrophobic tails. Positive regulation of these signaling networks caused by the lipid chain length specificity of upstream phospholipases is firmly established. Nonagonistic lysolipid homologues, featuring incompatible lipid tails, have been suggested to indirectly modulate GPCR signaling by delaying agonist catabolism. Nonetheless, recent results seem inconsistent with this hypothesis. Utilizing a simplified lysolipid-GPCR signaling assay based on the established lysophosphatidylglucoside-GPR55 signaling axis in primary sensory neurons, we demonstrate that short-chain ligand homologues directly modulate receptor activation via a potent competitive antagonistic activity. Considering the well-documented tissue-specific concentration of lysolipid homologues, we propose that endogenous lysolipids with insufficient chain length for stable receptor activation exert an antagonistic activity, effectively representing a negative control mechanism for GPCR-associated lysolipid signaling.
Collapse
Affiliation(s)
- Adam T. Guy
- RIKEN Center for Brain Science, RIKEN, Wako City, Saitama 351-0198, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Junpei Abe
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Mariko Inoue
- RIKEN Center for Brain Science, RIKEN, Wako City, Saitama 351-0198, Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research, RIKEN, Wako City, Saitama 351-0198, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, RIKEN, Wako City, Saitama 351-0198, Japan
| | - Hiroyuki Kamiguchi
- RIKEN Center for Brain Science, RIKEN, Wako City, Saitama 351-0198, Japan
| | - Peter Greimel
- RIKEN Center for Brain Science, RIKEN, Wako City, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Isawi IH, Morales P, Sotudeh N, Hurst DP, Lynch DL, Reggio PH. GPR6 Structural Insights: Homology Model Construction and Docking Studies. Molecules 2020; 25:molecules25030725. [PMID: 32046081 PMCID: PMC7037797 DOI: 10.3390/molecules25030725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/14/2023] Open
Abstract
GPR6 is an orphan G protein-coupled receptor that has been associated with the cannabinoid family because of its recognition of a sub-set of cannabinoid ligands. The high abundance of GPR6 in the central nervous system, along with high constitutive activity and a link to several neurodegenerative diseases make GPR6 a promising biological target. In fact, diverse research groups have demonstrated that GPR6 represents a possible target for the treatment of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Several patents have claimed the use of a wide range of pyrazine derivatives as GPR6 inverse agonists for the treatment of Parkinson's disease symptoms and other dyskinesia syndromes. However, the full pharmacological importance of GPR6 has not yet been fully explored due to the lack of high potency, readily available ligands targeting GPR6. The long-term goal of the present study is to develop such ligands. In this paper, we describe our initial steps towards this goal. A human GPR6 homology model was constructed using a suite of computational techniques. This model permitted the identification of unique GPR6 structural features and the exploration of the GPR6 binding crevice. A subset of patented pyrazine analogs were docked in the resultant GPR6 inactive state model to validate the model, rationalize the structure-activity relationships from the reported patents and identify the key residues in the binding crevice for ligand recognition. We will take this structural knowledge into the next phase of GPR6 project, in which scaffold hopping will be used to design new GPR6 ligands.
Collapse
Affiliation(s)
- Israa H. Isawi
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Paula Morales
- Instituto de Química Medica (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Noori Sotudeh
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Dow P. Hurst
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Diane L. Lynch
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
- Correspondence:
| |
Collapse
|
16
|
Hill JD, Zuluaga-Ramirez V, Gajghate S, Winfield M, Sriram U, Persidsky Y, Persidsky Y. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation. Brain Behav Immun 2019; 76:165-181. [PMID: 30465881 PMCID: PMC6398994 DOI: 10.1016/j.bbi.2018.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022] Open
Abstract
New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia. Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult. In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury. NSC differentiation and neurogenesis was determined via immunofluorescence and flow cytometric analysis of NSC markers (Nestin, Sox2, DCX, S100β, βIII Tubulin, GFAP). GPR55 agonist treatment protected against IL-1β induced reductions in neurogenesis rates. Moreover, inflammatory cytokine receptor mRNA expression was down regulated by GPR55 activation in a neuroprotective manner. To determine inflammatory responses in vivo, we treated C57BL/6 and GPR55-/- mice with LPS (0.2 mg/kg/day) continuously for 14 days via osmotic mini-pump. Reductions in NSC survival (as determined by BrdU incorporation), immature neurons, and neuroblast formation due to LPS were attenuated by concurrent direct intrahippocampal administration of the GPR55 agonist, O-1602 (4 µg/kg/day). Molecular analysis of the hippocampal region showed a suppressed ability to regulate immune responses by GPR55-/- animals manifesting in a prolonged inflammatory response (IL-1β, IL-6, TNFα) after chronic, systemic inflammation as compared to C57BL/6 animals. Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.
Collapse
Affiliation(s)
- Jeremy D. Hill
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Guy AT, Kano K, Ohyama J, Kamiguchi H, Hirabayashi Y, Ito Y, Matsuo I, Greimel P. Preference for Glucose over Inositol Headgroup during Lysolipid Activation of G Protein-Coupled Receptor 55. ACS Chem Neurosci 2019; 10:716-727. [PMID: 30346710 DOI: 10.1021/acschemneuro.8b00505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptor 55 (GPR55) is highly expressed in brain and peripheral nervous system. Originally deorphanized as a cannabinoid receptor, recently GPR55 has been described as a lysophospholipid-responsive receptor, specifically toward lysophosphatidylinositol and lysophosphatidyl-β-d-glucoside (LysoPtdGlc). To characterize lysolipid-GPR55 interaction, synthetic access to LysoPtdGlc and selected analogues was established utilizing a phosphorus(III)-based chemical approach. The biological activity of each synthetic lipid was assessed using a GPR55-dependent chemotropism assay in primary sensory neurons. Combined with molecular dynamics simulations the potential ligand entry port and binding pocket specifics are discussed. These results highlight the preference for gluco- over inositol- and galacto-configured headgroups.
Collapse
|
18
|
Lipina C, Walsh SK, Mitchell SE, Speakman JR, Wainwright CL, Hundal HS. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB J 2018; 33:1299-1312. [PMID: 30148676 PMCID: PMC6355063 DOI: 10.1096/fj.201800171r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Emerging evidence indicates that G-protein coupled receptor 55 (GPR55), a nonclassic receptor of the endocannabinoid system that is activated by L-α-lysophosphatidylinositol and various cannabinoid ligands, may regulate endocrine function and energy metabolism. We examined how GPR55 deficiency and modulation affects insulin signaling in skeletal muscle, adipose tissue, and liver alongside expression analysis of proteins implicated in insulin action and energy metabolism. We show that GPR55-null mice display decreased insulin sensitivity in these tissues, as evidenced by reduced phosphorylation of PKB/Akt and its downstream targets, concomitant with increased adiposity and reduced physical activity relative to wild-type counterparts. Impaired tissue insulin sensitivity coincided with reduced insulin receptor substrate-1 abundance in skeletal muscle, whereas in liver and epididymal fat it was associated with increased expression of the 3-phosphoinoistide lipid phosphatase, phosphatase and tensin homolog. In contrast, GPR55 activation enhanced insulin signaling in cultured skeletal muscle cells, adipocytes, and hepatocytes; this response was negated by receptor antagonists and GPR55 gene silencing in L6 myotubes. Sustained GPR55 antagonism in 3T3-L1 adipocytes enhanced expression of proteins implicated in lipogenesis and promoted triglyceride accumulation. Our findings identify GPR55 as a positive regulator of insulin action and adipogenesis and as a potential therapeutic target for countering obesity-induced metabolic dysfunction and insulin resistance.-Lipina, C., Walsh, S. K., Mitchell, S. E., Speakman, J. R., Wainwright, C. L., Hundal, H. S. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, Robert Gordon University, Aberdeen, United Kingdom
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cherry L Wainwright
- Centre for Cardiometabolic Health Research, Robert Gordon University, Aberdeen, United Kingdom
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
19
|
Hill JD, Zuluaga-Ramirez V, Gajghate S, Winfield M, Persidsky Y. Activation of GPR55 increases neural stem cell proliferation and promotes early adult hippocampal neurogenesis. Br J Pharmacol 2018; 175:3407-3421. [PMID: 29888782 DOI: 10.1111/bph.14387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/30/2018] [Accepted: 05/28/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The cannabinoid system exerts functional regulation of neural stem cell (NSC) proliferation and adult neurogenesis, yet not all effects of cannabinoid-like compounds seen can be attributed to the cannabinoid 1 (CB1 ) or CB2 receptor. The recently de-orphaned GPR55 has been shown to be activated by numerous cannabinoid ligands suggesting that GPR55 is a third cannabinoid receptor. Here, we examined the role of GPR55 activation in NSC proliferation and early adult neurogenesis. EXPERIMENTAL APPROACH The effects of GPR55 agonists (LPI, O-1602, ML184) on human (h) NSC proliferation in vitro were assessed by flow cytometry. Human NSC differentiation was determined by flow cytometry, qPCR and immunohistochemistry. Immature neuron formation in the hippocampus of C57BL/6 and GPR55-/- mice was evaluated by immunohistochemistry. KEY RESULTS Activation of GPR55 significantly increased proliferation rates of hNSCs in vitro. These effects were attenuated by ML193, a selective GPR55 antagonist. ML184 significantly promoted neuronal differentiation in vitro while ML193 reduced differentiation rates as compared to vehicle treatment. Continuous administration of O-1602 into the hippocampus via a cannula connected to an osmotic pump resulted in increased Ki67+ cells within the dentate gyrus. O-1602 increased immature neuron generation, as assessed by DCX+ and BrdU+ cells, as compared to vehicle-treated animals. GPR55-/- animals displayed reduced rates of proliferation and neurogenesis within the hippocampus while O-1602 had no effect as compared to vehicle controls. CONCLUSIONS AND IMPLICATIONS Together, these findings suggest GPR55 activation as a novel target and strategy to regulate NSC proliferation and adult neurogenesis.
Collapse
Affiliation(s)
- Jeremy D Hill
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Ding F, Guy AT, Greimel P, Hirabayashi Y, Kamiguchi H, Ito Y. Squaryl group modified phosphoglycolipid analogs as potential modulators of GPR55. Chem Commun (Camb) 2018; 54:8470-8473. [DOI: 10.1039/c8cc04467h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the facile synthesis of a series of LPGlc analogs, their GPR dependent biological activity and a systematic analysis of the structure–activity relationship in regards to GPR55 modulation.
Collapse
Affiliation(s)
- Feiqing Ding
- Synthetic Cellular Chemistry Laboratory
- RIKEN
- Wako
- Japan
| | | | | | | | | | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory
- RIKEN
- Wako
- Japan
| |
Collapse
|
21
|
Morales P, Reggio PH. An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res 2017; 2:265-273. [PMID: 29098189 PMCID: PMC5665501 DOI: 10.1089/can.2017.0036] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.
Collapse
Affiliation(s)
- Paula Morales
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| | - Patricia H. Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| |
Collapse
|
22
|
Abstract
The Reggio group has constructed computer models of the inactive and G-protein-activated states of the cannabinoid CB1 and CB2 receptors, as well as, several orphan receptors that recognize a subset of cannabinoid compounds, including GPR55 and GPR18. These models have been used to design ligands, mutations, and covalent labeling studies. The resultant second-generation models have been used to design ligands with improved affinity, efficacy, and subtype selectivity. Herein, we provide a guide for the development of GPCR models using the most recent orphan receptor studied in our lab, GPR3. GPR3 is an orphan receptor that belongs to the Class A family of G-protein-coupled receptors. It shares high sequence similarity with GPR6, GPR12, the lysophospholipid receptors, and the cannabinoid receptors. GPR3 is predominantly expressed in mammalian brain and oocytes and it is known as a Gαs-coupled receptor activated constitutively in cells. GPR3 represents a possible target for the treatment of different pathological conditions such as Alzheimer's disease, oocyte maturation, or neuropathic pain. However, the lack of potent and selective GPR3 ligands is delaying the exploitation of this promising therapeutic target. In this context, we aim to develop a homology model that helps us to elucidate the structural determinants governing ligand-receptor interactions at GPR3. In this chapter, we detail the methods and rationale behind the construction of the GPR3 active-and inactive-state models. These homology models will enable the rational design of novel ligands, which may serve as research tools for further understanding of the biological role of GPR3.
Collapse
Affiliation(s)
- Paula Morales
- University of North Carolina at Greensboro, Greensboro, NC, United States.
| | - Dow P Hurst
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Patricia H Reggio
- University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|