1
|
Maruyama H, Yamada Y, Igarashi Y, Matsuda K, Wakimoto T. Enzymatic peptide macrocyclization via indole- N-acylation. Chem Sci 2025; 16:3872-3877. [PMID: 39911344 PMCID: PMC11792885 DOI: 10.1039/d4sc07839j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Indole N-acylation is chemically challenging, due to the low nucleophilicity of the indole nitrogen. Although a few similar transformations have been proposed in the biosynthesis of indole-containing natural products, their enzymatic basis remains elusive. Here, we show that BulbE TE is an N-acylindole-forming macrocyclase involved in the biosynthesis of the non-ribosomal cyclopeptide bulbiferamide. BulbE catalyzed macrocyclization not only via the indole nitrogen, but also via a primary amine and an alcohol. The uncommon catalytic residue Cys731 in BulbE TE was indispensable for the nucleophilic attack from the indole nitrogen. While the C731S variant failed to utilize the indole nitrogen and primary alcohol as nucleophiles, it retained the ability to employ the amine nucleophile, showing a clear correlation between the catalytic residues and the nucleophile scope. A model of the acyl-enzyme complex revealed how the substrate is recognized, including interactions involving a unique second lid-like structural motif in BulbE TE. This study provides an enzymatic basis for indole N-acylation and offers important insights into the nucleophile specificity in TE-mediated macrocyclization.
Collapse
Affiliation(s)
- Hiroto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita 12, Kita-ku Sapporo 060-0812 Japan
| | - Yuito Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita 12, Kita-ku Sapporo 060-0812 Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa Imizu Toyama 939-0398 Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita 12, Kita-ku Sapporo 060-0812 Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita 12, Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
2
|
Matsuda K. Macrocyclizing-thioesterases in bacterial non-ribosomal peptide biosynthesis. J Nat Med 2025; 79:1-14. [PMID: 39214926 PMCID: PMC11735501 DOI: 10.1007/s11418-024-01841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Macrocyclization of peptides reduces conformational flexibilities, potentially leading to improved drug-like properties. However, side reactions such as epimerization and oligomerization often pose synthetic challenges. Peptide-cyclizing biocatalysts in the biosynthesis of non-ribosomal peptides (NRPs) have remarkable potentials as chemoenzymatic tools to facilitate more straightforward access to complex macrocycles. This review highlights the biocatalytic potentials of NRP cyclases, especially those of cis-acting thioesterases, the most general cyclizing machinery in NRP biosynthesis. Growing insights into penicillin-binding protein-type thioesterases, a relatively new group of trans-acting thioesterases, are also summarized.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
3
|
Präve L, Seyfert CE, Bozhüyük KAJ, Racine E, Müller R, Bode HB. Investigation of the Odilorhabdin Biosynthetic Gene Cluster Using NRPS Engineering. Angew Chem Int Ed Engl 2024; 63:e202406389. [PMID: 38801753 DOI: 10.1002/anie.202406389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.
Collapse
Affiliation(s)
- Leonard Präve
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Carsten E Seyfert
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Department of Pharmacy, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Kenan A J Bozhüyük
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438, Frankfurt, Germany
- Myria Biosciences AG, Hochbergerstrasse 60 C, 4057, Basel, Switzerland
- Present address: Synthetic Biology of Microbial Natural Products (SIMS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany
| | - Emilie Racine
- Nosopharm, 226 rue Georges Besse, 30000, Nîmes, France
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Department of Pharmacy, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438, Frankfurt, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043, Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043, Marburg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany
| |
Collapse
|
4
|
Paquette AR, Brazeau-Henrie JT, Boddy CN. Thioesterases as tools for chemoenzymatic synthesis of macrolactones. Chem Commun (Camb) 2024; 60:3379-3388. [PMID: 38456624 DOI: 10.1039/d4cc00401a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Macrocycles are a key functional group that can impart unique properties into molecules. Their synthesis has led to the development of many outstanding chemical methodologies and yet still remains challenging. Thioesterase (TE) domains are frequently responsible for macrocyclization in natural product biosynthesis and provide unique strengths for the enzymatic synthesis of macrocycles. In this feature article, we describe our work to characterize the substrate selectivity of TEs and to use these enzymes as biocatalysts. Our efforts have shown that the linear thioester activated substrates are loaded on TEs with limited substrate selectivity to generate acyl-enzyme intermediates. We show that cyclization of the acyl-enzyme intermediates can be highly selective, with competing hydrolysis of the acyl-enzyme intermediates. The mechanisms controlling TE-mediated macrocyclization versus hydrolysis are a significant unsolved problem in TE biochemistry. The potential of TEs as biocatalysts was demonstrated by using them in the chemoenzymatic total synthesis of macrocyclic depsipeptide natural products. This article highlights the strengths and potential of TEs as biocatalysts as well as their limitations, opening exciting research opportunities including TE engineering to optimize these powerful biocatalysts.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| | - Jordan T Brazeau-Henrie
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
5
|
Wang H, Wang N, Tan Y, Mi Q, Mao Y, Zhao C, Tian X, Liu W, Huang L. Paenibacillus polymyxa YLC1: a promising antagonistic strain for biocontrol of Pseudomonas syringae pv. actinidiae, causing kiwifruit bacterial canker. PEST MANAGEMENT SCIENCE 2023; 79:4357-4366. [PMID: 37417001 DOI: 10.1002/ps.7633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Kiwifruit bacterial canker (KBC) caused by Pseudomonas syringae pv. actinidiae (Psa) is the main limiting factor in the kiwifruit industry. This study aimed to identify bacterial strains with antagonistic activity against Psa, analyze antagonistically active substances and provide a new basis for the biological control of KBC. RESULTS A total of 142 microorganisms were isolated from the rhizosphere soil of asymptomatic kiwifruit. Among them, an antagonistic bacterial strain was identified as Paenibacillus polymyxa YLC1 by 16S rRNA sequencing. KBC control by strain YLC1 (85.4%) was comparable to copper hydroxide treatment (81.8%) under laboratory conditions and field testing. Active substances of strain YLC1 were identified by genetic sequence analysis using antiSMASH. Six biosynthetic active compound gene clusters were identified as encoding ester peptide synthesis, such as polymyxins. An active fraction was purified and identified as polymyxin B1 using chromatography, hydrogen nuclear magnetic resonance (NMR), and liquid chromatography-mass spectrometry. In addition, polymyxin B1 also was found significantly to suppress the expression of T3SS-related genes, but did not affect the growth of Psa at low concentrations. CONCLUSION In this study, a biocontrol strain P. polymyxa YLC1 obtained from kiwifruit rhizosphere soil exhibited excellent control effects on KBC in vitro and in field tests. Its active compound was identified as polymyxin B1, which inhibits a variety of pathogenic bacteria. We conclude that P. polymyxa YLC1 is a biocontrol strain with excellent prospects for development and application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Nana Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Life Science, Northwest A&F University, Yangling, People's Republic of China
| | - Yunxiao Tan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Qianqian Mi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Yiru Mao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Chao Zhao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Xiangrong Tian
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Wei Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Lili Huang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
6
|
Brazeau-Henrie JT, Paquette AR, Boddy CN. In Vitro Biochemical Characterization of Excised Macrocyclizing Thioesterase Domains from Non-ribosomal Peptide Synthetases. Methods Mol Biol 2023; 2670:101-125. [PMID: 37184701 DOI: 10.1007/978-1-0716-3214-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Characterization of thioesterases (TEs) is an important step in understanding natural product biosynthesis. Studying non-ribosomal peptide synthetase (NRPS) TEs presents a unique set of challenges with specific cloning and expression issues as well as the challenging synthesis of the thioester peptides substrate required for characterization of the TE. In this method, we describe the cloning and expression of NRPS TEs, the synthesis of thioester peptides, and the in vitro biochemical characterization of the enzyme.
Collapse
Affiliation(s)
| | - André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Kobayashi M, Fujita K, Matsuda K, Wakimoto T. Chemo-Enzymatic Synthesis of Non-ribosomal Macrolactams by a Penicillin-Binding Protein-Type Thioesterase. Methods Mol Biol 2023; 2670:127-144. [PMID: 37184702 DOI: 10.1007/978-1-0716-3214-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Penicillin-binding protein-type thioesterases (PBP-type TEs) are an emerging family of non-ribosomal peptide cyclases. PBP-type TEs exhibit distinct substrate scopes from the well-exploited ribosomal peptide cyclases and traditional non-ribosomal peptide cyclases. Their unique properties, as well as their stand-alone nature, highlight PBP-type TEs as valuable candidates for development as biocatalysts for peptide macrocyclization. Here in this chapter, we describe the scheme for the chemoenzymatic synthesis of non-ribosomal macrolactam by SurE, a representative member of PBP-type TEs.
Collapse
Affiliation(s)
| | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Adrover-Castellano ML, Schmidt JJ, Sherman DH. Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products. ChemCatChem 2021; 13:2095-2116. [PMID: 34335987 PMCID: PMC8320681 DOI: 10.1002/cctc.202001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Many biologically active natural products are synthesized by nonribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and their hybrids. These megasynthetases contain modules possessing distinct catalytic domains that allow for substrate initiation, chain extension, processing and termination. At the end of a module, a terminal domain, usually a thioesterase (TE), is responsible for catalyzing the release of the NRPS or PKS as a linear or cyclized product. In this review, we address the general cyclization mechanism of the TE domain, including oligomerization and the fungal C-C bond forming Claisen-like cyclases (CLCs). Additionally, we include examples of cyclization catalysts acting within or at the end of a module. Furthermore, condensation-like (CT) domains, terminal reductase (R) domains, reductase-like domains that catalyze Dieckmann condensation (RD), thioesterase-like Dieckmann cyclases, trans-acting TEs from the penicillin binding protein (PBP) enzyme family, product template (PT) domains and others will also be reviewed. The studies summarized here highlight the remarkable diversity of NRPS and PKS cyclization catalysts for the production of biologically relevant, complex cyclic natural products and related compounds.
Collapse
Affiliation(s)
| | - Jennifer J Schmidt
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| |
Collapse
|
10
|
Yuan Y, Xu QM, Yu SC, Sun HZ, Cheng JS, Yuan YJ. Control of the polymyxin analog ratio by domain swapping in the nonribosomal peptide synthetase of Paenibacillus polymyxa. J Ind Microbiol Biotechnol 2020; 47:551-562. [PMID: 32495197 DOI: 10.1007/s10295-020-02275-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
Abstract
Polymyxins are used as the last-line therapy against multidrug-resistant bacteria. However, their further clinical development needs to solve problems related to the presence of heterogeneous analogs, but there is still no platform or methods that can regulate the biosynthesis of polymyxin analogs. In this study, we present an approach to swap domains in the polymyxin gene cluster to regulate the production of different analogs. Following adenylation domain swapping, the proportion of polymyxin B1 increased from 41.36 to 52.90%, while that of B1-1 decreased from 18.25 to 3.09%. The ratio of polymyxin B1 and B3 following starter condensation domain swapping changed from 41.36 and 16.99 to 55.03 and 6.39%, respectively. The two domain-swapping strains produced 62.96% of polymyxin B1, 6.70% of B3 and 3.32% of B1-1. This study also revealed the presence of overflow fluxes between acetoin, 2,3-butanediol and polymyxin. To our best knowledge, this is the first report of engineering the polymyxin synthetase gene cluster in situ to regulate the relative proportions of polymyxin analogs. This research paves a way for regulating lipopeptide analogs and will facilitate the development of novel lipopeptide derivatives.
Collapse
Affiliation(s)
- Ye Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China.
| | - Si-Cen Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| |
Collapse
|
11
|
Panman W, Nutho B, Chamni S, Dokmaisrijan S, Kungwan N, Rungrotmongkol T. Computational screening of fatty acid synthase inhibitors against thioesterase domain. J Biomol Struct Dyn 2018; 36:4114-4125. [PMID: 29161996 DOI: 10.1080/07391102.2017.1408496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Thioesterase (TE) domain of fatty acid synthase (FAS) is an attractive therapeutic target for design and development of anticancer drugs. In this present work, we search for the potential FAS inhibitors of TE domain from the ZINC database based on similarity search using three natural compounds as templates, including flavonoids, terpenoids, and phenylpropanoids. Molecular docking was used to predict the interaction energy of each screened ligand compared to the reference compound, which is methyl γ-linolenylfluorophosphonate (MGLFP). Based on this computational technique, rosmarinic acid and its eight analogs were observed as a new series of potential FAS inhibitors, which showed a stronger binding affinity than MGLFP. Afterward, nine docked complexes were studied by molecular dynamics simulations for investigating protein-ligand interactions and binding free energies using MM-PB(GB)SA, MM-3DRISM-KH, and QM/MM-GBSA methods. The binding free energy calculation indicated that the ZINC85948835 (R34) displayed the strongest binding efficiency against the TE domain of FAS. There are eight residues (S2308, I2250, E2251, Y2347, Y2351, F2370, L2427, and E2431) mainly contributed for the R34 binding. Moreover, R34 could directly form hydrogen bonds with S2308, which is one of the catalytic triad of TE domain. Therefore, our finding suggested that R34 could be a potential candidate as a novel FAS-TE inhibitor for further drug design.
Collapse
Affiliation(s)
- Wanwisa Panman
- a Multidisciplinary Program of Petrochemistry and Polymer Science, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Bodee Nutho
- b Program in Biotechnology, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Supakarn Chamni
- c Faculty of Pharmaceutical Sciences, Department of Pharmacognosy and Pharmaceutical Botany , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Supaporn Dokmaisrijan
- d Division of Chemistry, School of Science , Walailak University , Nakon Si Thammarat 80161 , Thailand
| | - Nawee Kungwan
- e Faculty of Science, Department of Chemistry , Chiang Mai University , 239 Huay Kaew Road, Muang District, Chiang Mai 50200 , Thailand
- f Research Center on Chemistry for Development of Health Promoting Products from Northern Resources , Chiang Mai University , Chiang Mai , 50200 , Thailand
| | - Thanyada Rungrotmongkol
- g Faculty of Science, Structural and Computational Biology Research Group, Department of Biochemistry , Chulalongkorn University , Bangkok 10330 , Thailand
- h Faculty of Science, Program in Bioinformatics and Computational Biology , Chulalongkorn University , Bangkok 10330 , Thailand
| |
Collapse
|
12
|
Walsh CT. Are highly morphed peptide frameworks lurking silently in microbial genomes valuable as next generation antibiotic scaffolds? Nat Prod Rep 2017; 34:687-693. [PMID: 28513710 DOI: 10.1039/c7np00011a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotics are a therapeutic class that, once deployed, select for resistant bacterial pathogens and so shorten their useful life cycles. As a consequence new versions of antibiotics are constantly needed. Among the antibiotic natural products, morphed peptide scaffolds, converting conformationally mobile, short-lived linear peptides into compact, rigidified small molecule frameworks, act on a wide range of bacterial targets. Advances in bacterial genome mining, biosynthetic gene cluster prediction and expression, and mass spectroscopic structure analysis suggests many more peptides, modified both in side chains and peptide backbones, await discovery. Such molecules may turn up new bacterial targets and be starting points for combinatorial or semisynthetic manipulations to optimize activity and pharmacology parameters.
Collapse
|