1
|
Ghosh S, Clore GM. Decoding chaperone complexes: Insights from NMR spectroscopy. BIOPHYSICS REVIEWS 2024; 5:041308. [PMID: 39679202 PMCID: PMC11637561 DOI: 10.1063/5.0233299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Molecular chaperones play a key role in protein homeostasis by preventing misfolding and aggregation, assisting in proper protein folding, and sometimes even disaggregating formed aggregates. Chaperones achieve this through a range of transient weak protein-protein interactions, which are difficult to study using traditional structural and biophysical techniques. Nuclear magnetic resonance (NMR) spectroscopy, however, is well-suited for studying such dynamic states and interactions. A wide range of NMR experiments have been particularly valuable in understanding the mechanisms of chaperone function, as they can characterize disordered protein structures, detect weak and nonspecific interactions involving sparsely populated states, and probe the conformational dynamics of proteins and their complexes. Recent advances in NMR have significantly enhanced our knowledge of chaperone mechanisms, especially chaperone-client interactions, despite the inherent challenges posed by the flexibility and complexity of these systems. In this review, we highlight contributions of NMR to the chaperone field, focusing on the work carried out in our laboratory, which have provided insights into how chaperones maintain function within the cellular environment and interact with various protein substrates.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
2
|
Torricella F, Clore GM, Tugarinov V. A Closed-Form Expression for Analysis of Dark State Exchange Saturation Transfer (DEST) NMR Experiments. J Phys Chem Lett 2024; 15:11007-11014. [PMID: 39465986 DOI: 10.1021/acs.jpclett.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Closed-form expressions for the analysis of Dark state Exchange Saturation Transfer (DEST) NMR experiments, a powerful experimental tool for characterizing exchange processes involving the interaction of NMR visible species with very high molecular weight partners, is presented. Essentially identical exchange and relaxation parameters are derived from the analytical and numerical best fits of the DEST profiles obtained for a protein construct derived from huntingtin exon-1, comprising the N-terminal amphiphilic sequence followed by a seven-residue glutamine repeat, httNTQ7, in the presence of small (SUV) and large (LUV) unilamellar lipid vesicles. The use of analytical expressions significantly speeds up the fitting of experimental DEST profiles to a two-state exchange model and simplifies the analysis of the DEST effects.
Collapse
Affiliation(s)
- Francesco Torricella
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
3
|
Törner R, Kupreichyk T, Hoyer W, Boisbouvier J. The role of heat shock proteins in preventing amyloid toxicity. Front Mol Biosci 2022; 9:1045616. [PMID: 36589244 PMCID: PMC9798239 DOI: 10.3389/fmolb.2022.1045616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The oligomerization of monomeric proteins into large, elongated, β-sheet-rich fibril structures (amyloid), which results in toxicity to impacted cells, is highly correlated to increased age. The concomitant decrease of the quality control system, composed of chaperones, ubiquitin-proteasome system and autophagy-lysosomal pathway, has been shown to play an important role in disease development. In the last years an increasing number of studies has been published which focus on chaperones, modulators of protein conformational states, and their effects on preventing amyloid toxicity. Here, we give a comprehensive overview of the current understanding of chaperones and amyloidogenic proteins and summarize the advances made in elucidating the impact of these two classes of proteins on each other, whilst also highlighting challenges and remaining open questions. The focus of this review is on structural and mechanistic studies and its aim is to bring novices of this field "up to speed" by providing insight into all the relevant processes and presenting seminal structural and functional investigations.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| |
Collapse
|
4
|
Ceccon A, Kubatova N, Louis JM, Clore GM, Tugarinov V. Global Dynamics of a Protein on the Surface of Anisotropic Lipid Nanoparticles Derived from Relaxation-Based NMR Spectroscopy. J Phys Chem B 2022; 126:5646-5654. [PMID: 35877206 DOI: 10.1021/acs.jpcb.2c03519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The global motions of ubiquitin, a model protein, on the surface of anisotropically tumbling 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG):1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles are described. The shapes of POPG:DHPC bicelles prepared with high molar ratios q of POPG to DHPC can be approximated by prolate ellipsoids, with the ratio of ellipsoid dimensions and dimensions themselves increasing with higher values of q. Adaptation of the nuclear magnetic resonance (NMR) relaxation-based approach that we previously developed for interactions of ubiquitin with spherical POPG liposomes (Ceccon, A. J. Am. Chem. Soc. 2016, 138, 5789-5792) allowed us to quantitatively analyze the variation in lifetime line broadening of NMR signals (ΔR2) measured for ubiquitin in the presence of q = 2 POPG:DHPC bicelles and the associated transverse spin relaxation rates (R2,B) of bicelle-bound ubiquitin. Ubiquitin, transiently bound to POPG:DHPC bicelles, undergoes internal rotation about an axis orthogonal to the surface of the bicelle and perpendicular to the principal axis of its rotational diffusion tensor on the low microsecond time scale (∼3 μs), while the rotation axis itself wobbles in a cone on a submicrosecond time scale (≤ 500 ns).
Collapse
Affiliation(s)
- Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Nina Kubatova
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
5
|
Clore GM. NMR spectroscopy, excited states and relevance to problems in cell biology - transient pre-nucleation tetramerization of huntingtin and insights into Huntington's disease. J Cell Sci 2022; 135:jcs258695. [PMID: 35703323 PMCID: PMC9270955 DOI: 10.1242/jcs.258695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing three-dimensional structure and dynamics of macromolecules at atomic resolution. Recent advances have exploited the unique properties of NMR in exchanging systems to detect, characterize and visualize excited sparsely populated states of biological macromolecules and their complexes, which are only transient. These states are invisible to conventional biophysical techniques, and play a key role in many processes, including molecular recognition, protein folding, enzyme catalysis, assembly and fibril formation. All the NMR techniques make use of exchange between sparsely populated NMR-invisible and highly populated NMR-visible states to transfer a magnetization property from the invisible state to the visible one where it can be easily detected and quantified. There are three classes of NMR experiments that rely on differences in distance, chemical shift or transverse relaxation (molecular mass) between the NMR-visible and -invisible species. Here, I illustrate the application of these methods to unravel the complex mechanism of sub-millisecond pre-nucleation oligomerization of the N-terminal region of huntingtin, encoded by exon-1 of the huntingtin gene, where CAG expansion leads to Huntington's disease, a fatal autosomal-dominant neurodegenerative condition. I also discuss how inhibition of tetramerization blocks the much slower (by many orders of magnitude) process of fibril formation.
Collapse
Affiliation(s)
- G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| |
Collapse
|
6
|
Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease. Proc Natl Acad Sci U S A 2022; 119:e2203172119. [PMID: 35452308 PMCID: PMC9170070 DOI: 10.1073/pnas.2203172119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein aggregates are often toxic, leading to impaired cellular activities and disease. The human HtrA2 trimeric enzyme cleaves such aggregates, and mutations in HtrA2 are causative for various neurodegenerative disorders, such as Parkinson’s disease and essential tremor. The mechanism by which cleavage occurs has been studied using small peptides, but little information is available as to how HtrA2 protects cells from the pathologic effects of aggregation involving protein molecules that can form well-folded structures. Using solution NMR spectroscopy, we investigated the structural dynamics of the interaction between HtrA2 and a model protein substrate, demonstrating that HtrA2 preferentially binds to an unfolded substrate ensemble and providing insights into how HtrA2 function is regulated. The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-transverse relaxation optimized spectroscopy (TROSY)–based NMR studies using small-peptide ligands have previously revealed a stepwise activation mechanism involving multiple distinct conformational states. However, very little is known about how HtrA2 binds to protein substrates and if the distinct conformational states observed in previous peptide studies might be involved in the processing of protein clients. Herein, we use solution-based NMR spectroscopy to investigate the interaction between the N-terminal Src homology 3 domain from downstream of receptor kinase (drk) with an added C-terminal HtrA2-binding motif (drkN SH3-PDZbm) that exhibits marginal folding stability and serves as a mimic of a physiological protein substrate. We show that drkN SH3-PDZbm binds to HtrA2 via a two-pronged interaction, involving both its C-terminal PDZ-domain binding motif and a central hydrophobic region, with binding occurring preferentially via an unfolded ensemble of substrate molecules. Multivalent interactions between several clients and a single HtrA2 trimer significantly stimulate the catalytic activity of HtrA2, suggesting that binding avidity plays an important role in regulating substrate processing. Our results provide a thermodynamic, kinetic, and structural description of the interaction of HtrA2 with protein substrates and highlight the importance of a trimeric architecture for function as a stress-protective protease that mitigates aggregation.
Collapse
|
7
|
Tugarinov V, Ceccon A, Clore GM. NMR methods for exploring 'dark' states in ligand binding and protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:1-24. [PMID: 35282867 PMCID: PMC8921508 DOI: 10.1016/j.pnmrs.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
A survey, primarily based on work in the authors' laboratory during the last 10 years, is provided of recent developments in NMR studies of exchange processes involving protein-ligand and protein-protein interactions. We start with a brief overview of the theoretical background of Dark state Exchange Saturation Transfer (DEST) and lifetime line-broadening (ΔR2) NMR methodology. Some limitations of the DEST/ΔR2 methodology in applications to molecular systems with intermediate molecular weights are discussed, along with the means of overcoming these limitations with the help of closely related exchange NMR techniques, such as the measurements of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, exchange-induced chemical shifts or rapidly-relaxing components of relaxation decays. Some theoretical underpinnings of the quantitative description of global dynamics of proteins on the surface of very high molecular weight particles (nanoparticles) are discussed. Subsequently, several applications of DEST/ΔR2 methodology are described from a methodological perspective with an emphasis on providing examples of how kinetic and relaxation parameters for exchanging systems can be reliably extracted from NMR data for each particular model of exchange. Among exchanging systems that are not associated with high molecular weight species, we describe several exchange NMR-based studies that focus on kinetic modelling of transient pre-nucleation oligomerization of huntingtin peptides that precedes aggregation and fibril formation.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| | - Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
8
|
Karamanos TK, Clore GM. Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2022; 51:223-246. [PMID: 35044800 DOI: 10.1146/annurev-biophys-090921-120150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein-protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein-protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone-substrate and chaperone-chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom;
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
9
|
Hiller S. Molecular chaperones and their denaturing effect on client proteins. JOURNAL OF BIOMOLECULAR NMR 2021; 75:1-8. [PMID: 33136251 PMCID: PMC7897196 DOI: 10.1007/s10858-020-00353-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/23/2020] [Indexed: 05/05/2023]
Abstract
Advanced NMR methods combined with biophysical techniques have recently provided unprecedented insight into structure and dynamics of molecular chaperones and their interaction with client proteins. These studies showed that several molecular chaperones are able to dissolve aggregation-prone polypeptides in aqueous solution. Furthermore, chaperone-bound clients often feature fluid-like backbone dynamics and chaperones have a denaturing effect on clients. Interestingly, these effects that chaperones have on client proteins resemble the effects of known chaotropic substances. Following this analogy, chaotropicity could be a fruitful concept to describe, quantify and rationalize molecular chaperone function. In addition, the observations raise the possibility that at least some molecular chaperones might share functional similarities with chaotropes. We discuss these concepts and outline future research in this direction.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056, Basel, Switzerland.
| |
Collapse
|
10
|
Hu Y, Li C, He L, Jin C, Liu M. Mechanisms of Chaperones as Active Assistant/Protector for Proteins: Insights from NMR Studies. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunfei Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for OptoelectronicsNational Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) Wuhan Hubei 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for OptoelectronicsNational Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) Wuhan Hubei 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for OptoelectronicsNational Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) Wuhan Hubei 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, College of Life Sciences, Peking University Beijing 100871 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for OptoelectronicsNational Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) Wuhan Hubei 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Alderson TR, Kay LE. Unveiling invisible protein states with NMR spectroscopy. Curr Opin Struct Biol 2020; 60:39-49. [DOI: 10.1016/j.sbi.2019.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
|
12
|
Tugarinov V, Clore GM. Exchange saturation transfer and associated NMR techniques for studies of protein interactions involving high-molecular-weight systems. JOURNAL OF BIOMOLECULAR NMR 2019; 73:461-469. [PMID: 31407202 PMCID: PMC6819251 DOI: 10.1007/s10858-019-00244-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 05/15/2023]
Abstract
A brief overview of theoretical and experimental aspects of the Dark state Exchange Saturation Transfer (DEST) and lifetime line broadening ([Formula: see text]) NMR methodologies is presented from a physico-chemical perspective. We describe how the field-dependence of [Formula: see text] can be used for determining the exchange regime on the transverse spin relaxation time-scale. Some limitations of DEST/[Formula: see text] methodology in applications to molecular systems with intermediate molecular weights are discussed, and the means of overcoming these limitations via the use of closely related exchange NMR techniques is presented. Finally, several applications of DEST/[Formula: see text] methodology are described from a methodological viewpoint, with an emphasis on providing examples of how kinetic and relaxation parameters of exchange can be reliably extracted from the experimental data in each particular case.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
13
|
Hiller S. Chaperone-Bound Clients: The Importance of Being Dynamic. Trends Biochem Sci 2019; 44:517-527. [PMID: 30611607 DOI: 10.1016/j.tibs.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Several recent atomic-resolution studies have resolved how chaperones interact with their client proteins. In some cases, molecular chaperones recognize and bind their clients in conformational ensembles that are locally highly dynamic and interconvert, while in other cases clients bind in unique conformations. The presence of a locally dynamic client ensemble state has important consequences, both for the interpretation of experimental data and for the functionality of chaperones, as local dynamics facilitate rapid client release, folding on and from the chaperone surface, and client recognition without shape complementarity. Facilitated by the local dynamics, at least some chaperones appear to specifically recognize energetically frustrated sites of partially folded client proteins, such that the release of frustration contributes to the interaction affinity.
Collapse
|
14
|
Piana S, Shaw DE. Atomic-Level Description of Protein Folding inside the GroEL Cavity. J Phys Chem B 2018; 122:11440-11449. [PMID: 30277396 DOI: 10.1021/acs.jpcb.8b07366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chaperonins (ubiquitous facilitators of protein folding) sequester misfolded proteins within an internal cavity, thus preventing protein aggregation during the process of refolding. GroEL, a tetradecameric bacterial chaperonin, is one of the most studied chaperonins, but the role of the internal cavity in the refolding process is still unclear. It has been suggested that rather than simply isolating proteins while they refold, the GroEL cavity actively promotes protein folding. A detailed characterization of the folding dynamics and thermodynamics of protein substrates encapsulated within the cavity, however, has been difficult to obtain by experimental means, due to the system's complexity and the many steps in the folding cycle. Here, we examine the influence of the GroEL cavity on protein folding based on the results of unbiased, atomistic molecular dynamics simulations. We first verified that the computational setup, which uses a recently developed state-of-the-art force field that more accurately reproduces the aggregation propensity of unfolded states, could recapitulate the essential structural dynamics of GroEL. In these simulations, the GroEL tetradecamer was highly dynamic, transitioning among states corresponding to most of the structures that have been observed experimentally. We then simulated a small, unfolded protein both in the GroEL cavity and in bulk solution and compared the protein's folding process within these two environments. Inside the GroEL cavity, the unfolded protein interacted strongly with the disordered residues in GroEL's C-terminal tails. These interactions stabilized the protein's unfolded states relative to its compact states and increased the roughness of its folding free-energy surface, resulting in slower folding compared to the rate in solution. For larger proteins, which are more typical GroEL substrates, we speculate that these interactions may allow substrates to more quickly escape kinetic traps associated with compact, misfolded states, thereby actively promoting folding.
Collapse
Affiliation(s)
- Stefano Piana
- D. E. Shaw Research , New York , New York 10036 , United States
| | - David E Shaw
- D. E. Shaw Research , New York , New York 10036 , United States.,Department of Biochemistry and Molecular Biophysics , Columbia University , New York , New York 10032 , United States
| |
Collapse
|
15
|
Ceccon A, Clore GM, Tugarinov V. Decorrelating Kinetic and Relaxation Parameters in Exchange Saturation Transfer NMR: A Case Study of N-Terminal Huntingtin Peptides Binding to Unilamellar Lipid Vesicles. J Phys Chem B 2018; 122:11271-11278. [PMID: 30156416 DOI: 10.1021/acs.jpcb.8b07112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dark state exchange saturation transfer (DEST) and lifetime line-broadening (Δ R2, the difference in the measured transverse relaxation rates for the observable species in the presence and absence of exchange with a species characterized by very large intrinsic transverse relaxation rates) have proven to be powerful NMR tools for studying exchange phenomena between a NMR visible species and a high-molecular weight, "dark", NMR invisible state. However, in the exchange regime, where the transverse spin relaxation rates in the bound state ( R2bound) are smaller than the strength of the DEST saturation radio frequency field, typically corresponding to systems below ∼6 MDa, the combination of DEST and Δ R2 data, while sufficient to define the apparent association rate constant, cannot unambiguously determine the population of the bound state pB and R2bound values independently. We show that the latter exchange and relaxation parameters can be decorrelated by the measurement of the maximal value of the contribution of the fast-relaxing magnetization component to the total NMR signal, Cfastmax, an observable that is directly proportional to pB. When integrated into the analysis of DEST/Δ R2 data, Cfastmax provides an indispensable source of information for quantitative studies of exchange involving high-molecular-weight dark states. We demonstrate the utility of this approach by investigating the binding kinetics of two huntingtin exon-1-derived peptides to small unilamellar lipid vesicles (SUV), ∼ 31 nm in diameter and 4.3 MDa in molecular weight. The interaction of the N-terminal amphiphilic domain of huntingtin exon-1 with membrane surfaces promotes polyglutamine-mediated aggregation and, as such, is thought to play a role in the etiology of Huntington's disease, an autosomal dominant fatal neurodegenerative condition. The first peptide comprises the 16-residue N-terminal amphiphilic domain (httNT) alone, while the second contains an additional seven residue polyglutamine tract at the C-terminus (httNTQ7). At a peptide-to-lipid molar ratio of 1:4, the population of peptide bound to the SUV surface is substantial, ∼ 7-8%, while exchange between the free and SUV-bound peptide is slow on the relaxation time-scale ( kex ∼ 200 s-1). The last two C-terminal residues of httNT and the last 9 of httNTQ7 remain flexible in the SUV-bound form due to transient detachment from the lipid surface that occurs on a time-scale several-fold faster than binding.
Collapse
Affiliation(s)
- Alberto Ceccon
- Laboratory of Chemical Physics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - G Marius Clore
- Laboratory of Chemical Physics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Vitali Tugarinov
- Laboratory of Chemical Physics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
16
|
Cheng C, Wu J, Liu G, Shi S, Chen T. Effects of Non-native Interactions on Frustrated Proteins Folding under Confinement. J Phys Chem B 2018; 122:7654-7667. [DOI: 10.1021/acs.jpcb.8b04147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chenqian Cheng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Jing Wu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Gaoyuan Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Suqing Shi
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Tao Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
17
|
Wälti MA, Libich DS, Clore GM. Extensive Sampling of the Cavity of the GroEL Nanomachine by Protein Substrates Probed by Paramagnetic Relaxation Enhancement. J Phys Chem Lett 2018; 9:3368-3371. [PMID: 29869885 PMCID: PMC6029692 DOI: 10.1021/acs.jpclett.8b01586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The chaperonin GroEL is a 800 kDa nanomachine comprising two heptameric rings, each of which encloses a large cavity or folding chamber. The GroEL cycle involves ATP-dependent capping of the cavity by the cochaperone GroES to create a nanocage in which a single protein molecule can fold. We investigate how protein substrates sample the cavity prior to encapsulation by GroES using paramagnetic relaxation enhancement to detect transient, sparsely populated interactions between apo GroEL, paramagnetically labeled at several sites within the cavity, and three variants of an SH3 protein domain (the fully native wild type, a triple mutant that exchanges between a folded state and an excited folding intermediate, and a stable folding intermediate mimetic). We show that the substrate not only interacts with the hydrophobic inner rim of GroEL at the mouth of the cavity but also penetrates deep within the cavity, transiently contacting the disordered C-terminal tail, and, in the case of the folding intermediate mimetic, the base as well. Transient interactions with the C-terminal tail may facilitate substrate capture and retention prior to encapsulation.
Collapse
|
18
|
Hiller S, Burmann BM. Chaperone-client complexes: A dynamic liaison. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:142-155. [PMID: 29544626 DOI: 10.1016/j.jmr.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/08/2023]
Abstract
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University for Gothenburg, 405 30 Göteborg, Sweden.
| |
Collapse
|
19
|
Horowitz S, Koldewey P, Stull F, Bardwell JC. Folding while bound to chaperones. Curr Opin Struct Biol 2017; 48:1-5. [PMID: 28734135 DOI: 10.1016/j.sbi.2017.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023]
Abstract
Chaperones are important in preventing protein aggregation and aiding protein folding. How chaperones aid protein folding remains a key question in understanding their mechanism. The possibility of proteins folding while bound to chaperones was reintroduced recently with the chaperone Spy, many years after the phenomenon was first reported with the chaperones GroEL and SecB. In this review, we discuss the salient features of folding while bound in the cases for which it has been observed and speculate about its biological importance and possible occurrence in other chaperones.
Collapse
Affiliation(s)
- Scott Horowitz
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80208, USA.
| | - Philipp Koldewey
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - Frederick Stull
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|