1
|
Forcada-Nadal A, Bibak S, Salinas P, Contreras A, Rubio V, Llácer J. Structures of the cyanobacterial nitrogen regulators NtcA and PipX complexed to DNA shed light on DNA binding by NtcA and implicate PipX in the recruitment of RNA polymerase. Nucleic Acids Res 2025; 53:gkaf096. [PMID: 39995039 PMCID: PMC11850224 DOI: 10.1093/nar/gkaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
The CRP-FNR (cAMP receptor protein-fumarate/nitrate reductase regulator) superfamily of transcriptional regulators includes the cyanobacterial master regulator NtcA, which orchestrates large responses of cyanobacteria to nitrogen scarcity. NtcA uses as allosteric activator 2-oxoglutarate (2OG), a signal of nitrogen poorness and carbon richness, and binds a co-activating protein (PipX) that shuttles between the signaling protein PII and NtcA depending on nitrogen richness, thus connecting PII signaling and gene expression regulation. Here, combining structural (X-ray crystallography of six types of crystals including NtcA complexes with DNA, 2OG, and PipX), modeling, and functional [electrophoretic mobility shift assays and bacterial two-hybrid (BACTH)] studies, we clarify the reasons for the exquisite specificity for the binding of NtcA to its target DNA, its mechanisms of activation by 2OG, and its co-activation by PipX. Our crystal structures of PipX-NtcA-DNA complexes prove that PipX does not interact with DNA, although it increases NtcA-DNA contacts, and that it stabilizes the active, DNA-binding-competent conformation of NtcA. Superimposition of this complex on a very recently reported cryo-electron microscopy structure of NtcA in a transcription activity complex with RNA polymerase (RNAP), shows that PipX binding helps recruit RNAP by PipX interaction with RNAP, particularly with its gamma and sigma (region 4) subunits, a structural prediction supported here by BACTH experiments.
Collapse
Affiliation(s)
- Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), E-46010, Valencia, Spain
- Group 739 at the IBV-CSIC of the Centro de Investigación Biomédica en Red en Enfermedades Raras of the Instituto de Salud Carlos III (CIBERER-ISCIII), E-28029, Spain
| | - Sirine Bibak
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03690, San Vicente del Raspeig, Spain
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03690, San Vicente del Raspeig, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03690, San Vicente del Raspeig, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), E-46010, Valencia, Spain
- Group 739 at the IBV-CSIC of the Centro de Investigación Biomédica en Red en Enfermedades Raras of the Instituto de Salud Carlos III (CIBERER-ISCIII), E-28029, Spain
| | - José L Llácer
- Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), E-46010, Valencia, Spain
- Group 739 at the IBV-CSIC of the Centro de Investigación Biomédica en Red en Enfermedades Raras of the Instituto de Salud Carlos III (CIBERER-ISCIII), E-28029, Spain
| |
Collapse
|
2
|
Salinas P, Bibak S, Cantos R, Tremiño L, Jerez C, Mata-Balaguer T, Contreras A. Studies on the PII-PipX-NtcA Regulatory Axis of Cyanobacteria Provide Novel Insights into the Advantages and Limitations of Two-Hybrid Systems for Protein Interactions. Int J Mol Sci 2024; 25:5429. [PMID: 38791467 PMCID: PMC11121479 DOI: 10.3390/ijms25105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the E. coli cytoplasm of the adenylate cyclase of Bordetella pertussis, should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems. A comprehensive mutational analysis of PipX and bacterial two-hybrid assays were performed to compare the outcomes between yeast and bacterial systems. We detected interactions that were previously recorded in the yeast two-hybrid system as negative, as well as a "false positive", the self-interaction of PipX, which is rather an indirect interaction that is dependent on PII homologues from the E. coli host, a result confirmed by Western blot analysis with relevant PipX variants. This is, to our knowledge, the first report of the molecular basis of a false positive in the bacterial two-hybrid system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Asunción Contreras
- Departamento. de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (P.S.); (S.B.); (R.C.); (L.T.); (C.J.); (T.M.-B.)
| |
Collapse
|
3
|
Jerez C, Llop A, Salinas P, Bibak S, Forchhammer K, Contreras A. Analysing the Cyanobacterial PipX Interaction Network Using NanoBiT Complementation in Synechococcus elongatus PCC7942. Int J Mol Sci 2024; 25:4702. [PMID: 38731921 PMCID: PMC11083307 DOI: 10.3390/ijms25094702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.
Collapse
Affiliation(s)
- Carmen Jerez
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
- Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany;
| | - Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Sirine Bibak
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany;
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| |
Collapse
|
4
|
Neira JL, Palomino-Schätzlein M, Rejas V, Traverso JA, Rico M, López-Gorgé J, Chueca A, Cámara-Artigas A. Three-dimensional solution structure, dynamics and binding of thioredoxin m from Pisum sativum. Int J Biol Macromol 2024; 262:129781. [PMID: 38296131 DOI: 10.1016/j.ijbiomac.2024.129781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Thioredoxins (TRXs) are ubiquitous small, globular proteins involved in cell redox processes. In this work, we report the solution structure of TRX m from Pisum sativum (pea), which has been determined on the basis of 1444 nuclear Overhauser effect- (NOE-) derived distance constraints. The average pairwise root-mean-square deviation (RMSD) for the 20 best structures for the backbone residues (Val7-Glu102) was 1.42 ± 0.15 Å, and 1.97 ± 0.15 Å when all heavy atoms were considered. The structure corresponds to the typical fold of TRXs, with a central five-stranded β-sheet flanked by four α-helices. Some residues had an important exchange dynamic contribution: those around the active site; at the C terminus of β-strand 3; and in the loop preceding α-helix 4. Smaller NOE values were observed at the N and C-terminal residues forming the elements of the secondary structure or, alternatively, in the residues belonging to the loops between those elements. A peptide derived from pea fructose-1,6-biphosphatase (FBPase), comprising the preceding region to the regulatory sequence of FBPase (residues Glu152 to Gln179), was bound to TRX m with an affinity in the low micromolar range, as measured by fluorescence and NMR titration experiments. Upon peptide addition, the intensities of the cross-peaks of all the residues of TRX m were affected, as shown by NMR. The value of the dissociation constant of the peptide from TRX m was larger than that of the intact FBPase, indicating that there are additional factors in other regions of the polypeptide chain of the latter protein affecting the binding to thioredoxin.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Martina Palomino-Schätzlein
- ProtoQSAR SL, CEEI-Valencia. Parque Tecnológico de Valencia, Av. Benjamin Franklin 12 (Dep. 8), 46980 Paterna, Valencia, Spain
| | - Virginia Rejas
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yufera 3, 46012, Valencia, Spain
| | - José A Traverso
- Department of Cell Biology, Faculty of Science, University of Granada, 18001 Granada, Spain
| | - Manual Rico
- Instituto de Quimica Física Blas Cabrera (CSIC), Calle Serrano 119, 28006 Madrid, Spain
| | - Julio López-Gorgé
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Prof. Albareda 1, 18008 Granada, Spain
| | - Ana Chueca
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Prof. Albareda 1, 18008 Granada, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain
| |
Collapse
|
5
|
Llop A, Tremiño L, Cantos R, Contreras A. The Signal Transduction Protein PII Controls the Levels of the Cyanobacterial Protein PipX. Microorganisms 2023; 11:2379. [PMID: 37894037 PMCID: PMC10609283 DOI: 10.3390/microorganisms11102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Cyanobacteria, microorganisms performing oxygenic photosynthesis, must adapt their metabolic processes to environmental challenges such as day and night changes. PipX, a unique regulatory protein from cyanobacteria, provides a mechanistic link between the signalling protein PII, a widely conserved (in bacteria and plants) transducer of carbon/nitrogen/energy richness, and the transcriptional regulator NtcA, which controls a large regulon involved in nitrogen assimilation. PipX is also involved in translational regulation through interaction with the ribosome-assembly GTPase EngA. However, increases in the PipX/PII ratio are toxic, presumably due to the abnormally increased binding of PipX to other partner(s). Here, we present mutational and structural analyses of reported PipX-PII and PipX-NtcA complexes, leading to the identification of single amino acid changes that decrease or abolish PipX toxicity. Notably, 4 out of 11 mutations decreasing toxicity did not decrease PipX levels, suggesting that the targeted residues (F12, D23, L36, and R54) provide toxicity determinants. In addition, one of those four mutations (D23A) argued against the over-activation of NtcA as the cause of PipX toxicity. Most mutations at residues contacting PII decreased PipX levels, indicating that PipX stability would depend on its ability to bind to PII, a conclusion supported by the light-induced decrease of PipX levels in Synechococcus elongatus PCC7942 (hereafter S. elongatus).
Collapse
Affiliation(s)
| | | | | | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (A.L.); (L.T.); (R.C.)
| |
Collapse
|
6
|
Drabinska J, Steczkiewicz K, Kujawa M, Kraszewska E. Searching for Biological Function of the Mysterious PA2504 Protein from Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22189833. [PMID: 34575996 PMCID: PMC8466066 DOI: 10.3390/ijms22189833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
For nearly half of the proteome of an important pathogen, Pseudomonas aeruginosa, the function has not yet been recognised. Here, we characterise one such mysterious protein PA2504, originally isolated by us as a sole partner of the RppH RNA hydrolase involved in transcription regulation of multiple genes. This study aims at elucidating details of PA2504 function and discussing its implications for bacterial biology. We show that PA2504 forms homodimers and is evenly distributed in the cytoplasm of bacterial cells. Molecular modelling identified the presence of a Tudor-like domain in PA2504. Transcriptomic analysis of a ΔPA2504 mutant showed that 42 transcripts, mainly coding for proteins involved in sulphur metabolism, were affected by the lack of PA2504. In vivo crosslinking of cellular proteins in the exponential and stationary phase of growth revealed several polypeptides that bound to PA2504 exclusively in the stationary phase. Mass spectrometry analysis identified them as the 30S ribosomal protein S4, the translation elongation factor TufA, and the global response regulator GacA. These results indicate that PA2504 may function as a tether for several important cellular factors.
Collapse
|
7
|
Labella JI, Cantos R, Salinas P, Espinosa J, Contreras A. Distinctive Features of PipX, a Unique Signaling Protein of Cyanobacteria. Life (Basel) 2020; 10:life10060079. [PMID: 32481703 PMCID: PMC7344720 DOI: 10.3390/life10060079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
PipX is a unique cyanobacterial protein identified by its ability to bind to PII and NtcA, two key regulators involved in the integration of signals of the nitrogen/carbon and energy status, with a tremendous impact on nitrogen assimilation and gene expression in cyanobacteria. PipX provides a mechanistic link between PII, the most widely distributed signaling protein, and NtcA, a global transcriptional regulator of cyanobacteria. PII, required for cell survival unless PipX is inactivated or down-regulated, functions by protein–protein interactions with transcriptional regulators, transporters, and enzymes. In addition, PipX appears to be involved in a wider signaling network, supported by the following observations: (i) PII–PipX complexes interact with PlmA, an as yet poorly characterized transcriptional regulator also restricted to cyanobacteria; (ii) the pipX gene is functionally connected with pipY, a gene encoding a universally conserved pyridoxal phosphate binding protein (PLPBP) involved in vitamin B6 and amino acid homeostasis, whose loss-of-function mutations cause B6-dependent epilepsy in humans, and (iii) pipX is part of a relatively robust, six-node synteny network that includes pipY and four additional genes that might also be functionally connected with pipX. In this overview, we propose that the study of the protein–protein interaction and synteny networks involving PipX would contribute to understanding the peculiarities and idiosyncrasy of signaling pathways that are conserved in cyanobacteria.
Collapse
|
8
|
Forcada-Nadal A, Llácer JL, Contreras A, Marco-Marín C, Rubio V. The P II-NAGK-PipX-NtcA Regulatory Axis of Cyanobacteria: A Tale of Changing Partners, Allosteric Effectors and Non-covalent Interactions. Front Mol Biosci 2018; 5:91. [PMID: 30483512 PMCID: PMC6243067 DOI: 10.3389/fmolb.2018.00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
PII, a homotrimeric very ancient and highly widespread (bacteria, archaea, plants) key sensor-transducer protein, conveys signals of abundance or poorness of carbon, energy and usable nitrogen, converting these signals into changes in the activities of channels, enzymes, or of gene expression. PII sensing is mediated by the PII allosteric effectors ATP, ADP (and, in some organisms, AMP), 2-oxoglutarate (2OG; it reflects carbon abundance and nitrogen scarcity) and, in many plants, L-glutamine. Cyanobacteria have been crucial for clarification of the structural bases of PII function and regulation. They are the subject of this review because the information gathered on them provides an overall structure-based view of a PII regulatory network. Studies on these organisms yielded a first structure of a PII complex with an enzyme, (N-acetyl-Lglutamate kinase, NAGK), deciphering how PII can cause enzyme activation, and how it promotes nitrogen stockpiling as arginine in cyanobacteria and plants. They have also revealed the first clear-cut mechanism by which PII can control gene expression. A small adaptor protein, PipX, is sequestered by PII when nitrogen is abundant and is released when is scarce, swapping partner by binding to the 2OG-activated transcriptional regulator NtcA, co-activating it. The structures of PII-NAGK, PII-PipX, PipX alone, of NtcA in inactive and 2OG-activated forms and as NtcA-2OG-PipX complex, explain structurally PII regulatory functions and reveal the changing shapes and interactions of the T-loops of PII depending on the partner and on the allosteric effectors bound to PII. Cyanobacterial studies have also revealed that in the PII-PipX complex PipX binds an additional transcriptional factor, PlmA, thus possibly expanding PipX roles beyond NtcA-dependency. Further exploration of these roles has revealed a functional interaction of PipX with PipY, a pyridoxal-phosphate (PLP) protein involved in PLP homeostasis whose mutations in the human ortholog cause epilepsy. Knowledge of cellular levels of the different components of this PII-PipX regulatory network and of KD values for some of the complexes provides the basic background for gross modeling of the system at high and low nitrogen abundance. The cyanobacterial network can guide searches for analogous components in other organisms, particularly of PipX functional analogs.
Collapse
Affiliation(s)
- Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - José Luis Llácer
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| |
Collapse
|
9
|
Esteves-Ferreira AA, Inaba M, Fort A, Araújo WL, Sulpice R. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Crit Rev Microbiol 2018. [DOI: 10.1080/1040841x.2018.1446902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alberto A. Esteves-Ferreira
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Masami Inaba
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Antoine Fort
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Wagner L. Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ronan Sulpice
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| |
Collapse
|
10
|
Tremiño L, Forcada-Nadal A, Contreras A, Rubio V. Studies on cyanobacterial protein PipY shed light on structure, potential functions, and vitamin B 6 -dependent epilepsy. FEBS Lett 2017; 591:3431-3442. [PMID: 28914444 DOI: 10.1002/1873-3468.12841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/21/2017] [Accepted: 09/01/2017] [Indexed: 11/11/2022]
Abstract
The Synechococcus elongatus COG0325 gene pipY functionally interacts with the nitrogen regulatory gene pipX. As a first step toward a molecular understanding of such interactions, we characterized PipY. This 221-residue protein is monomeric and hosts pyridoxal phosphate (PLP), binding it with limited affinity and losing it upon incubation with D-cycloserine. PipY crystal structures with and without PLP reveal a single-domain monomer folded as the TIM barrel of type-III fold PLP enzymes, with PLP highly exposed, fitting a role for PipY in PLP homeostasis. The mobile PLP phosphate-anchoring C-terminal helix might act as a trigger for PLP exchange. Exploiting the universality of COG0325 functions, we used PipY in site-directed mutagenesis studies to shed light on disease causation by epilepsy-associated mutations in the human COG0325 gene PROSC.
Collapse
Affiliation(s)
- Lorena Tremiño
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain.,Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| |
Collapse
|