1
|
Dubovskii PV, Utkin YN. Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins (Basel) 2024; 16:262. [PMID: 38922156 PMCID: PMC11209149 DOI: 10.3390/toxins16060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia;
| | | |
Collapse
|
2
|
Dubovskii PV, Ignatova AA, Alekseeva AS, Starkov VG, Boldyrev IA, Feofanov AV, Utkin YN. Membrane-Disrupting Activity of Cobra Cytotoxins Is Determined by Configuration of the N-Terminal Loop. Toxins (Basel) 2022; 15:6. [PMID: 36668826 PMCID: PMC9866941 DOI: 10.3390/toxins15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes. Thus, if a cis peptide bond is present in loop-I, as in a Pro-Pro containing CTX, this should weaken its lipid interactions and likely cytotoxic activities. To test this, we have isolated seven CTX from Naja naja and N. haje cobra venoms. Antibacterial and cytotoxic activities of these CTX, as well as their capability to induce calcein leakage from phospholipid liposomes, were evaluated. We have found that CTX with a Pro-Pro peptide bond indeed exhibit attenuated membrane-perturbing activity in model membranes and lower cytotoxic/antibacterial activity compared to their counterparts with a single Pro residue in loop-I.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anastasia A. Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna S. Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ivan A. Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V. Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Bioengineering Department, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Dubovskii PV, Dubova KM, Bourenkov G, Starkov VG, Konshina AG, Efremov RG, Utkin YN, Samygina VR. Variability in the Spatial Structure of the Central Loop in Cobra Cytotoxins Revealed by X-ray Analysis and Molecular Modeling. Toxins (Basel) 2022; 14:toxins14020149. [PMID: 35202176 PMCID: PMC8880459 DOI: 10.3390/toxins14020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Cobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from Naja naja cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both “water” and “membrane” conformations of the central loop (loop-2) were determined by X-ray crystallography. The “water” conformation of the loop was frequently observed. It was similar to the structure of loop-2 of numerous CTs, determined by either NMR spectroscopy in aqueous solution, or the X-ray method. The “membrane” conformation is rare one and, to date has only been observed by NMR for a single cytotoxin 1 from N. oxiana (CT1No) in detergent micelle. Both CT13Nn and CT1No are S-type CTs. Membrane-binding of these CTs probably involves an additional step—the conformational transformation of the loop-2. To confirm this suggestion, we conducted molecular dynamics simulations of both CT1No and CT13Nn in the Highly Mimetic Membrane Model of palmitoiloleoylphosphatidylglycerol, starting with their “water” NMR models. We found that the both toxins transform their “water” conformation of loop-2 into the “membrane” one during the insertion process. This supports the hypothesis that the S-type CTs, unlike their P-type counterparts, require conformational adaptation of loop-2 during interaction with lipid membranes.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
- Correspondence: or
| | - Kira M. Dubova
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 111933 Moscow, Russia; (K.M.D.); (V.R.S.)
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, 22607 Hamburg, Germany;
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Anastasia G. Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141700 Dolgoprudny, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya str., 101000 Moscow, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Valeriya R. Samygina
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 111933 Moscow, Russia; (K.M.D.); (V.R.S.)
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
4
|
Dubinnyi MA, Dubovskii PV, Starkov VG, Utkin YN. The omega-loop of cobra cytotoxins tolerates multiple amino acid substitutions. Biochem Biophys Res Commun 2021; 558:141-146. [PMID: 33915327 DOI: 10.1016/j.bbrc.2021.04.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Cobra cytotoxins (CTs), the three-fingered proteins, feature high amino acid sequence homology in the beta-strands and variations in the loop regions. We selected a pair of cytotoxins from Naja kaouthia crude venom to clarify the sequence-structure relationships. Using chromatography and mass spectroscopy, we separated and identified the mixture of cytotoxins 2 and 3, differentiated by the only Val 41/Ala 41 substitution. Here, using natural abundance 13C, 15N NMR-spectroscopy we performed chemical shift assignments of the signals of the both toxins in aqueous solution in the major and minor forms. Combining NOE and chemical shift data, the toxins' spatial structure was determined. Finally, we proved that the tip of the "finger"-2, or the loop-2 of cytotoxins adopts the shape of an omega-loop with a tightly-bound water molecule in its cavity. Comparison with other NMR and X-ray structures of cytotoxins possessing different amino acid sequences reveals spatial similarity in this family of proteins, including the loop-2 region, previously considered to be flexible.
Collapse
Affiliation(s)
- Maxim A Dubinnyi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| | - Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia.
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| |
Collapse
|
5
|
Konshina AG, Dubovskii PV, Efremov RG. Stepwise Insertion of Cobra Cardiotoxin CT2 into a Lipid Bilayer Occurs as an Interplay of Protein and Membrane "Dynamic Molecular Portraits". J Chem Inf Model 2020; 61:385-399. [PMID: 33382618 DOI: 10.1021/acs.jcim.0c01137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many peripheral membrane-binding polypeptides(MBPs), especially β-structural ones, the precise molecular mechanisms of membrane insertion remain unclear. In most cases, only the terminal water-soluble and membrane-bound states have been elucidated, whereas potential functionally important intermediate stages are still not understood in sufficient detail. In this study, we present one of the first successful attempts to describe step-by-step embedding of the MBP cardiotoxin 2 (CT2) from cobra Naja oxiana venom into a lipid bilayer at the atomistic level. CT2 possesses a highly conservative and rigid β-structured three-finger fold shared by many other exogenous and endogenous proteins performing a wide variety of functions. The incorporation of CT2 into the lipid bilayer was analyzed via a 2 μs all-atom molecular dynamics (MD) simulation without restraints. This process was shown to occur over a number of distinct steps, while the geometry of initial membrane attachment drastically differs from that of the final equilibrated state. In the latter one, the hydrophobic platform ("bottom") formed by the tips of the three loops is deeply buried into the lipid bilayer. This agrees well with the NMR data obtained earlier for CT2 in detergent micelles. However, the bottom is too bulky to insert itself into the membrane at once. Instead, the gradual immersion of CT2 initiated by the loop-1 was observed. This initial binding stage was also demonstrated in a series of MD runs with varying starting orientations of the toxin with respect to the bilayer surface. Apart from the nonspecific long-range electrostatic attraction and hydrophobic match/mismatch factor, several specific lipid-binding sites were identified in CT2. They were shown to promote membrane insertion by engaging in strong interactions with lipid head groups, fine-tuning the toxin-membrane accommodation. We therefore propose that the toxin insertion relies on the interplay of nonspecific and specific interactions, which are determined by the "dynamic molecular portraits" of the two players, the protein and the membrane. The proposed model does not require protein oligomerization for membrane insertion and can be further employed to design MBPs with predetermined properties with regard to particular membrane targets.
Collapse
Affiliation(s)
- Anastasia G Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia.,National Research University Higher School of Economics, 20 Myasnitskaya str., Moscow 101000, Russia.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
6
|
Antibacterial activity of cardiotoxin-like basic polypeptide from cobra venom. Bioorg Med Chem Lett 2020; 30:126890. [PMID: 31870648 DOI: 10.1016/j.bmcl.2019.126890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
|
7
|
Dubovskii PV, Efremov RG. The role of hydrophobic /hydrophilic balance in the activity of structurally flexible vs. rigid cytolytic polypeptides and analogs developed on their basis. Expert Rev Proteomics 2018; 15:873-886. [PMID: 30328726 DOI: 10.1080/14789450.2018.1537786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Being important representatives of various proteomes, membrane-active cationic peptides (CPs) are attractive objects as lead compounds in the design of new antibacterial, anticancer, antifungal, and antiviral molecules. Numerous CPs are found in insect and snake venoms, where many of them reveal cytolytic properties. Due to advances in omics technologies, the number of such peptides is growing dramatically. Areas covered: To understand structure-function relationships for CPs in a living cell, detailed analysis of their hydrophobic/hydrophilic properties is indispensable. We consider two structural classes of membrane-active CPs: latarcins (Ltc) from spider and cardiotoxins (CTXs) from snake venoms. While the former are void off disulfide bonds and conformationally flexible, the latter are structurally rigid and cross-linked with disulfide bonds. In order to elucidate structure-activity relationships behind their antibacterial, anticancer, and hemolytic effects, the properties of these polypeptides are considered on a side-by-side basis. Expert commentary: An ever-increasing number of venom-derived membrane-active polypeptides require new methods for identification of their functional propensities and sequence-based design of novel pharmacological substances. We address these issues considering a number of the designed peptides, based either on Ltc or CTX sequences. Experimental and computer modeling techniques required for these purposes are delineated.
Collapse
Affiliation(s)
- Peter V Dubovskii
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia
| | - Roman G Efremov
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia.,b Moscow Institute of Physics and Technology , Dolgoprudnyi , Russian Federation.,c National Research University Higher School of Economics , Moscow , Russia
| |
Collapse
|
8
|
Dubovskii PV, Dubinnyi MA, Volynsky PE, Pustovalova YE, Konshina AG, Utkin YN, Arseniev AS, Efremov RG. Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin. J Biomol Struct Dyn 2017; 36:3463-3478. [PMID: 28990854 DOI: 10.1080/07391102.2017.1389662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Maxim A. Dubinnyi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Pavel E. Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Yulia E. Pustovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Anastasia G. Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| |
Collapse
|