1
|
Hodyna D, Klipkov A, Kachaeva M, Shulha Y, Gerus I, Metelytsia L, Kovalishyn V. In Silico Design and In Vitro Assessment of Bicyclic Trifluoromethylated Pyrroles as New Antibacterial and Antifungal Agents. Chem Biodivers 2024; 21:e202400638. [PMID: 38837284 DOI: 10.1002/cbdv.202400638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
QSAR studies on the number of compounds tested as S. aureus inhibitors were performed using an interactive Online Chemical Database and Modeling Environment (OCHEM) web platform. The predictive ability of the developed consensus QSAR model was q2=0.79±0.02. The consensus prediction for the external evaluation set afforded high predictive power (q2=0.82±0.03). The models were applied to screen a virtual chemical library with anti-S. aureus activity. Six promising new bicyclic trifluoromethylated pyrroles were identified, synthesized and evaluated in vitro against S. aureus, E. coli, and A. baumannii for their antibacterial activity and against C. albicans, C. krusei and C. glabrata for their antifungal activity. The synthesized compounds were characterized by 1H, 19F, and 13C NMR and elemental analysis. The antimicrobial activity assessment indicated that trifluoromethylated pyrroles 9 and 11 demonstrated the greatest antibacterial and antifungal effects against all the tested pathogens, especially against multidrug-resistant strains. The acute toxicity of the compounds to Daphnia magna ranged from 1.21 to 33.39 mg/L (moderately and slightly toxic). Based on the docking results, it can be suggested that the antibacterial and antifungal effects of the compounds can be explained by the inhibition of bacterial wall component synthesis.
Collapse
Affiliation(s)
- Diana Hodyna
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Anton Klipkov
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
- National University of Kyiv -, Mohyla Academy, 2, Skovorody Str., Kyiv, 04070, Ukraine
| | - Maryna Kachaeva
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Yurii Shulha
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Igor Gerus
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Larysa Metelytsia
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Vasyl Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| |
Collapse
|
2
|
Vieira Melo AK, da Nóbrega Alves D, Queiroga Gomes da Costa PC, Pereira Lopes S, Pergentino de Sousa D, Queiroga Sarmento Guerra F, Vieira Sobral M, Gomes Moura AP, Scotti L, Dias de Castro R. Antifungal Activity, Mode of Action, and Cytotoxicity of 4-Chlorobenzyl p-Coumarate: A Promising New Molecule. Chem Biodivers 2024; 21:e202400330. [PMID: 38701178 DOI: 10.1002/cbdv.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Fungal infections represent a serious health problem worldwide. The study evaluated the antifungal activity of 4-chlorobenzyl p-coumarate, an unprecedented semi-synthetic molecule. Docking molecular and assay experiments were conducted to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC), mode of action, effect on growth, fungal death kinetics, drug association, effects on biofilm, micromorphology, and against human keratinocytes. The investigation included 16 strains of Candida spp, including C. albicans, C. krusei, C. glabrata, C. tropicalis, C. dubliniensis, C. lusitaniae, C. utilis, C. rugosa, C. guilhermondi, and C. parapsilosis. Docking analysis predicted affinity between the molecule and all tested targets. MIC and MFC values ranged from 3.9 μg/mL (13.54 μM) to 62.5 μg/mL (217.01 μM), indicating a probable effect on the plasma membrane. The molecule inhibited growth from the first hour of testing. Association with nystatin proved to be indifferent. All concentrations of the molecule reduced fungal biofilm. The compound altered fungal micromorphology. The tested compound exhibited an IC50 of 7.90±0.40 μg/mL (27.45±1.42 μM) for keratinocytes. 4-chlorobenzyl p-coumarate showed strong fungicidal effects, likely through its action on the plasma membrane and alteration of fungal micromorphology, and mildly cytotoxic to human keratinocytes.
Collapse
Affiliation(s)
- Ana Karoline Vieira Melo
- Department of Clinical and Social Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Danielle da Nóbrega Alves
- Department of Clinical and Social Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil, Lauro Wanderley University Hospital, 58050-585, João Pessoa, PB, Brazil
| | | | - Susiany Pereira Lopes
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Felipe Queiroga Sarmento Guerra
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Marianna Vieira Sobral
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Ana Paula Gomes Moura
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Ricardo Dias de Castro
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraiba, Campus I, 58051-900, João Pessoa, PB, Brazil
| |
Collapse
|
3
|
Araújo GR, da Costa PCQG, Nogueira PL, Alves DDN, Ferreira AR, da Silva PR, de Andrade JC, de Sousa NF, Loureiro PBA, Sobral MV, Sousa DP, Scotti MT, de Castro RD, Scotti L. In Silico and In Vitro Evaluation of the Antifungal Activity of a New Chromone Derivative against Candida spp. BIOTECH 2024; 13:16. [PMID: 38921048 PMCID: PMC11201913 DOI: 10.3390/biotech13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Candida species are frequently implicated in the development of both superficial and invasive fungal infections, which can impact vital organs. In the quest for novel strategies to combat fungal infections, there has been growing interest in exploring synthetic and semi-synthetic products, particularly chromone derivatives, renowned for their antimicrobial properties. In the analysis of the antifungal activity of the compound (E)-benzylidene-chroman-4-one against Candida, in silico and laboratory tests were performed to predict possible mechanisms of action pathways, and in vitro tests were performed to determine antifungal activity (MIC and MFC), to verify potential modes of action on the fungal cell membrane and wall, and to assess cytotoxicity in human keratinocytes. The tested compound exhibited predicted affinity for all fungal targets, with the highest predicted affinity observed for thymidylate synthase (-102.589 kJ/mol). MIC and CFM values ranged from 264.52 μM (62.5 μg/mL) to 4232.44 μM (1000 μg/mL). The antifungal effect likely occurs due to the action of the compound on the plasma membrane. Therefore, (E)-benzylidene-chroman-4-one showed fungicidal-like activity against Candida spp., possibly targeting the plasma membrane.
Collapse
Affiliation(s)
- Gleycyelly Rodrigues Araújo
- Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Palloma Christine Queiroga Gomes da Costa
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Paula Lima Nogueira
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Danielle da Nóbrega Alves
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Alana Rodrigues Ferreira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Pablo R. da Silva
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Jéssica Cabral de Andrade
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Natália F. de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Paulo Bruno Araujo Loureiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Damião P. Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Ricardo Dias de Castro
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
- Institute of Drugs and Medicines Research, Federal University of Paraíba, Via Ipê Amarelo, S/N, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
4
|
Winkler KF, Panse L, Maiwald C, Hayeß J, Fischer P, Fehlau M, Neubauer P, Kurreck A. Screening the Thermotoga maritima genome for new wide-spectrum nucleoside and nucleotide kinases. J Biol Chem 2023:104746. [PMID: 37094698 DOI: 10.1016/j.jbc.2023.104746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Enzymes from thermophilic organisms are interesting biocatalysts for a wide variety of applications in organic synthesis, biotechnology and molecular biology. Next to an increased stability at elevated temperatures, they were described to show a wider substrate spectrum than their mesophilic counterparts. To identify thermostable biocatalysts for the synthesis of nucleotide analogs, we performed a database search on the carbohydrate and nucleotide metabolism of T. maritima. After expression and purification of 13 enzyme candidates involved in nucleotide synthesis, these enzymes were screened for their substrate scope. We found that the synthesis of 2'-deoxynucleoside 5'-monophosphates (dNMPs) and uridine 5'-monophosphate from nucleosides was catalyzed by the already known wide-spectrum thymidine kinase (TK) and the ribokinase. In contrast, no NMP-forming activity was detected for adenosine-specific kinase, uridine kinase or nucleotidase. The NMP kinases (NMPKs) and the pyruvate-phosphate-dikinase of T. maritima exhibited a rather specific substrate spectrum for the phosphorylation of NMPs, while pyruvate kinase, acetate kinase and three of the NMPKs showed a broad substrate scope with (2'-deoxy)nucleoside 5'-diphosphates as substrates. Based on these promising results, TmNMPKs were applied in enzymatic cascade reactions for nucleoside 5'-triphosphate synthesis using four modified pyrimidine nucleosides and four purine NMPs as substrates, and we determined that base- and sugar-modified substrates were accepted. In summary, besides the already reported TmTK, NMPKs of T. maritima were identified to be interesting enzyme candidates for the enzymatic production of modified nucleotides.
Collapse
Affiliation(s)
- Katja F Winkler
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | - Lena Panse
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | | | - Josefine Hayeß
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | - Pascal Fischer
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | - Maryke Fehlau
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany; BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| | - Peter Neubauer
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | - Anke Kurreck
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany; BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| |
Collapse
|
5
|
Rocha da Silva C, Sá LGDAV, Dos Santos EV, Ferreira TL, Coutinho TDNP, Moreira LEA, de Sousa Campos R, de Andrade CR, Barbosa da Silva WM, de Sá Carneiro I, Silva J, Dos Santos HS, Marinho ES, Cavalcanti BC, de Moraes MO, Júnior HVN, Andrade Neto JB. Evaluation of the antifungal effect of chlorogenic acid against strains of Candida spp. resistant to fluconazole: apoptosis induction and in silico analysis of the possible mechanisms of action. J Med Microbiol 2022; 71. [PMID: 35575783 DOI: 10.1099/jmm.0.001526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction. Candida spp. are commensal fungal pathogens of humans, but when there is an imbalance in the microbiota, or weak host immunity, these yeasts can become pathogenic, generating high medical costs.Gap Statement. With the increase in resistance to conventional antifungals, the development of new therapeutic strategies is necessary. This study evaluated the in vitro antifungal activity of chlorogenic acid against fluconazole-resistant strains of Candida spp. Mechanism of action through flow cytometry and in silico analyses, as well as molecular docking assays with ALS3 and SAP5, important proteins in the pathogenesis of Candida albicans associated with the adhesion process and biofilm formation.Results. The chlorogenic acid showed in vitro antifungal activity against the strains tested, causing reduced cell viability, increased potential for mitochondrial depolarization and production of reactive oxygen species, DNA fragmentation and phosphatidylserine externalization, indicating an apoptotic process. Concerning the analysis through docking, the complexes formed between chlorogenic acid and the targets Thymidylate Kinase, CYP51, 1Yeast Cytochrome BC1 Complex e Exo-B-(1,3)-glucanase demonstrated more favourable binding energy. In addition, chlorogenic acid presented significant interactions with the ALS3 active site residues of C. albicans, important in the adhesion process and resistance to fluconazole. Regarding molecular docking with SAP5, no significant interactions were found between chlorogenic acid and the active site of the enzyme.Conclusion. We concluded that chlorogenic acid has potential use as an adjuvant in antifungal therapies, due to its anti-Candida activity and ability to interact with important drug targets.
Collapse
Affiliation(s)
- Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | | | | | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rosana de Sousa Campos
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | | | - Igor de Sá Carneiro
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Bruno Coelho Cavalcanti
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Synthesis, Structural Characterization, and In Vitro and In Silico Antifungal Evaluation of Azo-Azomethine Pyrazoles (PhN 2(PhOH)CHN(C 3N 2(CH 3) 3)PhR, R = H or NO 2). Molecules 2021; 26:molecules26247435. [PMID: 34946516 PMCID: PMC8708670 DOI: 10.3390/molecules26247435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The azo-azomethine imines, R1-N=N-R2-CH=N-R3, are a class of active pharmacological ligands that have been prominent antifungal, antibacterial, and antitumor agents. In this study, four new azo-azomethines, R1 = Ph, R2 = phenol, and R3 = pyrazol-Ph-R’ (R = H or NO2), have been synthesized, structurally characterized using X-ray, IR, NMR and UV–Vis techniques, and their antifungal activity evaluated against certified strains of Candida albicans and Cryptococcus neoformans. The antifungal tests revealed a high to moderate inhibitory activity towards both strains, which is regulated as a function of both the presence and the location of the nitro group in the aromatic ring of the series. These biological assays were further complemented with molecular docking studies against three different molecular targets from each fungus strain. Molecular dynamics simulations and binding free energy calculations were performed on the two best molecular docking results for each fungus strain. Better affinity for active sites for nitro compounds at the “meta” and “para” positions was found, making them promising building blocks for the development of new Schiff bases with high antifungal activity.
Collapse
|
7
|
Ferreira ES, Cordeiro LV, Silva DDEF, Souza HDS, Athayde-Filho PFDE, Barbosa-Filho JM, Scotti L, Lima EO, Castro RDDE. Antifungal activity and mechanism of action of 2-chloro-N -phenylacetamide: a new molecule with activity against strains of Aspergillus flavus. AN ACAD BRAS CIENC 2021; 93:e20200997. [PMID: 34550200 DOI: 10.1590/0001-3765202120200997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022] Open
Abstract
Aspergillus genus causes many diseases, and the species Aspergillus flavus is highly virulent. Treatment of aspergillosis involves azole derivatives such as voriconazole and polyenes such as amphotericin B. Due to an increase in fungal resistance, treatments are now less effective; the search for new compounds with promising antifungal activity has gained importance. The aims of this study were to evaluate the effects of the synthetic amide 2-chloro-N-phenylacetamide (A1Cl) against strains of Aspergillus flavus and to elucidate its mechanism of action. Thus, the minimum inhibitory concentration, minimum fungicidal concentration, conidial germination, associations with antifungal agents, cell wall activities, membrane activities and molecular docking were evaluated. A1Cl presented antifungal activity against Aspergillus flavus strains with a minimum inhibitory concentration of between 16 and 256 μg/mL and a minimum fungicidal concentration between 32 and 512 μg/mL. The minimum inhibitory concentration of A1Cl also inhibited conidial germination, but when associated with amphotericin B and voriconazole, it promoted antagonistic effects. Binding to ergosterol on the fungal plasma membrane is the likely mechanism of action, along with possible inhibition of DNA synthesis through the inhibition of thymidylate synthase. It is concluded that the amide 2-chloro-N-phenylacetamide has promising antifungal potential.
Collapse
Affiliation(s)
- Elba S Ferreira
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Laísa V Cordeiro
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Daniele DE F Silva
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Helivaldo D S Souza
- Universidade Federal da Paraíba, Departamento de Química, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Petrônio F DE Athayde-Filho
- Universidade Federal da Paraíba, Departamento de Química, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - José Maria Barbosa-Filho
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Luciana Scotti
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Edeltrudes O Lima
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Ricardo D DE Castro
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| |
Collapse
|
8
|
Blindheim FH, Olsen CE, Krogh Søgaard C, Otterlei M, Sundby E, Hoff BH. Synthetic Strategies towards Imidazopyridinones and 7‐Azaoxindoles and their Evaluation as Antibacterial Agents. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fredrik Heen Blindheim
- Department of Chemistry Norwegian University of Science and Technology (NTNU) 7491 Trondheim Norway
| | - Cecilie Elisabeth Olsen
- Department of Chemistry Norwegian University of Science and Technology (NTNU) 7491 Trondheim Norway
| | - Caroline Krogh Søgaard
- Department of Clinical and Molecular Medicine Norwegian University of Science and Technology (NTNU) 7489 Trondheim Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine Norwegian University of Science and Technology (NTNU) 7489 Trondheim Norway
| | - Eirik Sundby
- Department of Material Science Norwegian University of Science and Technology (NTNU) 7491 Trondheim Norway
| | - Bård Helge Hoff
- Department of Chemistry Norwegian University of Science and Technology (NTNU) 7491 Trondheim Norway
| |
Collapse
|
9
|
Sinha K, Rule GS. Conformational diversity defines substrate specificity of thymidylate/uridylate kinase from Candida albicans. Proteins 2021; 89:937-944. [PMID: 33682244 DOI: 10.1002/prot.26071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/06/2021] [Accepted: 03/04/2021] [Indexed: 11/07/2022]
Abstract
Thymidylate kinase (TMK) from Candida albicans (CaTMK) contains a unique 15 residue insert, the CaLoop, that is not found on other TMKs. CaTMK is proficient at phosphorylating deoxyuridine monophosphate (dUMP), showing a rate 6-fold higher than TMP. It has been shown that deletion of the CaLoop reduces the activity towards dUMP by 19-fold, but has only a modest 4-fold decrease in activity towards TMP. The molecular dynamics calculations presented here show that the increased activity towards dUMP is due to an increase in flexibility and correlated motions of the protein that allows the enzyme-dUMP complex to more readily approach a catalytically competent state. Deletion of the CaLoop allows the dUMP-enzyme complex to adopt catalytically non-functional conformations. In contrast, TMP stabilizes the deletion such that it remains in a functional conformation that is similar to the conformation of the original enzyme.
Collapse
Affiliation(s)
- Kaustubh Sinha
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
da Nóbrega Alves D, Monteiro AFM, Andrade PN, Lazarini JG, Abílio GMF, Guerra FQS, Scotti MT, Scotti L, Rosalen PL, de Castro RD. Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity against Human Cells of Cinnamaldehyde. Molecules 2020; 25:molecules25245969. [PMID: 33339401 PMCID: PMC7767272 DOI: 10.3390/molecules25245969] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: This study evaluated the antifungal activity of cinnamaldehyde on Candida spp. In vitro and in situ assays were carried out to test cinnamaldehyde for its anti-Candida effects, antibiofilm activity, effects on fungal micromorphology, antioxidant activity, and toxicity on keratinocytes and human erythrocytes. Statistical analysis was performed considering α = 5%. Results: The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of cinnamaldehyde ranged from 18.91 μM to 37.83 μM. MIC values did not change in the presence of 0.8 M sorbitol, whereas an 8-fold increase was observed in the presence of ergosterol, suggesting that cinnamaldehyde may act on the cell membrane, which was subsequently confirmed by docking analysis. The action of cinnamaldehyde likely includes binding to enzymes involved in the formation of the cytoplasmic membrane in yeast cells. Cinnamaldehyde-treated microcultures showed impaired cellular development, with an expression of rare pseudo-hyphae and absence of chlamydoconidia. Cinnamaldehyde reduced biofilm adherence by 64.52% to 33.75% (p < 0.0001) at low concentrations (378.3–151.3 µM). Cinnamaldehyde did not show antioxidant properties. Conclusions: Cinnamaldehyde showed fungicidal activity through a mechanism of action likely related to ergosterol complexation; it was non-cytotoxic to keratinocytes and human erythrocytes and showed no antioxidant activity.
Collapse
Affiliation(s)
- Danielle da Nóbrega Alves
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Alex France Messias Monteiro
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Patrícia Néris Andrade
- Experimental Pharmacology and Cell Culture Laboratory, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Josy Goldoni Lazarini
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
| | - Gisely Maria Freire Abílio
- Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Felipe Queiroga Sarmento Guerra
- Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Marcus Tullius Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Chemistry, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Luciana Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Cheminformatics Laboratory, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Pedro Luiz Rosalen
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
- Biological Sciences Graduate Program (PPGCB), Institute of Biomedical Sciences (ICB), Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-000, Brazil
| | - Ricardo Dias de Castro
- Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7742
| |
Collapse
|
11
|
Fucci IJ, Sinha K, Rule GS. Stabilization of Active Site Dynamics Leads to Increased Activity with 3'-Azido-3'-deoxythymidine Monophosphate for F105Y Mutant Human Thymidylate Kinase. ACS OMEGA 2020; 5:2355-2367. [PMID: 32064397 PMCID: PMC7017412 DOI: 10.1021/acsomega.9b03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Thymidylate kinases are essential enzymes with roles in DNA synthesis and repair and have been the target of drug development for antimalarials, antifungals, HIV treatment, and cancer therapeutics. Human thymidylate kinase (hTMPK) conversion of the anti-HIV prodrug 3'-azido-3'-deoxythymidine (AZT or zidovudine) monophosphate to diphosphate is the rate-limiting step in the activation of AZT. A point mutant (F105Y) has been previously reported with significantly increased activity for the monophosphate form of the drug [3'-azidothymidine-5'-monophosphate (AZTMP)]. Using solution nuclear magnetic resonance (NMR) techniques, we show that while the wild-type (WT) and F105Y hTMPK adopt the same structure in solution, significant changes in dynamics may explain their different activities toward TMP and AZTMP. 13C spin-relaxation measurements show that there is little change in dynamics on the ps to ns time scale. In contrast, methyl 1H relaxation dispersion shows that AZTMP alters adenosine nucleotide handling in the WT protein but not in the mutant. Additionally, the F105Y mutant has reduced conformational flexibility, leading to an increase in affinity for the product ADP and a slower rate of phosphorylation of TMP. The dynamics at the catalytic center for F105Y bound to AZTMP are tuned to the same frequency as WT bound to TMP, which may explain the mutant's catalytic efficiency toward the prodrug.
Collapse
|
12
|
Chen MD, Fucci IJ, Sinha K, Rule GS. dGMP Binding to Thymidylate Kinase from Plasmodium falciparum Shows Half-Site Binding and Induces Protein Dynamics at the Dimer Interface. Biochemistry 2020; 59:694-703. [PMID: 31934749 DOI: 10.1021/acs.biochem.9b00898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum thymidylate kinase (PfTMK) is an essential enzyme for the growth of the organism because of its critical role in the de novo synthesis of deoxythymidine 5'-diphosphate (TDP), a precursor for TTP that is required for DNA replication and repair. The kinetics, thermodynamic parameters, and substrate binding properties of PfTMK for TMP, dGMP, ADP, and ATP were measured and characterized by steady-state kinetics and a combination of isothermal titration calorimetry, tryptophan fluorescence titration, and NMR. Mutational studies were performed to investigate residues that contribute to the unique ability of PfTMK to also utilize dGMP as a substrate. Isothermal titration calorimetry experiments revealed that dGMP binding exhibits a unique half-site binding mechanism. The occlusion of the empty site in the dGMP complex is supported by molecular mechanics calculations. Relaxation dispersion experiments show that the dGMP and enzyme complex is more dynamic at the dimer interface than the TMP complex on the μs-ms time scale. The unique properties of dGMP binding need to be considered in the design of guanosine-based PfTMK-specific inhibitors.
Collapse
Affiliation(s)
- Mengshen David Chen
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Ian J Fucci
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kaustubh Sinha
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Gordon S Rule
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
13
|
Schoeters F, Van Dijck P. Protein-Protein Interactions in Candida albicans. Front Microbiol 2019; 10:1792. [PMID: 31440220 PMCID: PMC6693483 DOI: 10.3389/fmicb.2019.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Despite being one of the most important human fungal pathogens, Candida albicans has not been studied extensively at the level of protein-protein interactions (PPIs) and data on PPIs are not readily available in online databases. In January 2018, the database called "Biological General Repository for Interaction Datasets (BioGRID)" that contains the most PPIs for C. albicans, only documented 188 physical or direct PPIs (release 3.4.156) while several more can be found in the literature. Other databases such as the String database, the Molecular INTeraction Database (MINT), and the Database for Interacting Proteins (DIP) database contain even fewer interactions or do not even include C. albicans as a searchable term. Because of the non-canonical codon usage of C. albicans where CUG is translated as serine rather than leucine, it is often problematic to use the yeast two-hybrid system in Saccharomyces cerevisiae to study C. albicans PPIs. However, studying PPIs is crucial to gain a thorough understanding of the function of proteins, biological processes and pathways. PPIs can also be potential drug targets. To aid in creating PPI networks and updating the BioGRID, we performed an exhaustive literature search in order to provide, in an accessible format, a more extensive list of known PPIs in C. albicans.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Huang CY, Chen YC, Wu-Hsieh BA, Fang JM, Chang ZF. The Ca-loop in thymidylate kinase is critical for growth and contributes to pyrimidine drug sensitivity of Candida albicans. J Biol Chem 2019; 294:10686-10697. [PMID: 31152062 DOI: 10.1074/jbc.ra118.006798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
The yeast Candida albicans is the most prevalent opportunistic fungal pathogen in humans. Drug resistance among C. albicans isolates poses a common challenge, and overcoming this resistance represents an unmet need in managing this common pathogen. Here, we investigated CDC8, encoding thymidylate kinase (TMPK), as a potential drug target for the management of C. albicans infections. We found that the region spanning amino acids 106-123, namely the Ca-loop of C. albicans TMPK (CaTMPK), contributes to the hyperactivity of this enzyme compared with the human enzyme (hTMPK) and to the utilization of deoxyuridine monophosphate (dUMP)/deoxy-5-fluorouridine monophosphate (5-FdUMP) as a substrate. Notably, expression of CaTMPK, but not of hTMPK, produced dUTP/5-FdUTP-mediated DNA toxicity in budding yeast (Saccharomyces cerevisiae). CRISPR-mediated deletion of this Ca-loop in C. albicans revealed that the Ca-loop is critical for fungal growth and susceptibility to 5-fluorouridine (5-FUrd). Of note, pathogenic and drug-resistant C. albicans clones were similarly sensitive to 5-FUrd, and we also found that CaTMPK is essential for the growth of C. albicans In conclusion, these findings not only identified a target site for the development of CaTMPK-selective drugs, but also revealed that 5-FUrd may have potential utility as drug for managing C. albicans infections.
Collapse
Affiliation(s)
- Chang-Yu Huang
- From the Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Linong Street, Taipei 11221.,the Institute of Molecular Medicine, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051
| | - Yee-Chun Chen
- the National Taiwan University Hospital and College of Medicine.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002
| | - Betty A Wu-Hsieh
- the Graduate Institute of Immunology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051, and
| | - Jim-Min Fang
- the Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Zee-Fen Chang
- From the Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Linong Street, Taipei 11221, .,the Institute of Molecular Medicine, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002
| |
Collapse
|
15
|
Chen MD, Sinha K, Rule GS, Ly DH. Interaction of α-Thymidine Inhibitors with Thymidylate Kinase from Plasmodium falciparum. Biochemistry 2018; 57:2868-2875. [PMID: 29684273 DOI: 10.1021/acs.biochem.8b00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum thymidylate kinase (PfTMK) is a critical enzyme in the de novo biosynthesis pathway of pyrimidine nucleotides. N-(5'-Deoxy-α-thymidin-5'-yl)- N'-[4-(2-chlorobenzyloxy)phenyl]urea was developed as an inhibitor of PfTMK and has been reported as an effective inhibitor of P. falciparum growth with an EC50 of 28 nM [Cui, H., et al. (2012) J. Med. Chem. 55, 10948-10957]. Using this compound as a scaffold, a number of derivatives were developed and, along with the original compound, were characterized in terms of their enzyme inhibition ( Ki) and binding affinity ( KD). Furthermore, the binding site of the synthesized compounds was investigated by a combination of mutagenesis and docking simulations. Although the reported compound is indicated to be highly effective in its inhibition of parasite growth, we observed significantly lower binding affinity and weaker inhibition of PfTMK than expected from the reported EC50. This suggests that significant structural optimization will be required for the use of this scaffold as an effective PfTMK inhibitor and that the inhibition of parasite growth is due to an off-target effect.
Collapse
Affiliation(s)
- Mengshen David Chen
- Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Kaustubh Sinha
- Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Gordon S Rule
- Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Danith H Ly
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|