1
|
Kokona B, Cunningham NR, Quinn JM, Jacobsen DR, Garcia FJ, Galindo SM, Petrucelli L, Stafford WF, Laue TM, Fairman R. Studying C9orf72 dipeptide repeat polypeptide aggregation using an analytical ultracentrifuge equipped with fluorescence detection. Anal Biochem 2025; 697:115720. [PMID: 39581338 PMCID: PMC11624972 DOI: 10.1016/j.ab.2024.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Sedimentation velocity, using an analytical ultracentrifuge equipped with fluorescence detection, and electrophoresis methods are used to study aggregation of proteins in transgenic animal model systems. Our previous work validated the power of this approach in an analysis of mutant huntingtin aggregation. We demonstrate that this method can be applied to another neurodegenerative disease studying the aggregation of three dipeptide repeats (DPRs) produced by aberrant translation of mutant c9orf72 containing large G4C2 hexanucleotide repeats. These repeat expansions are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We analyzed the aggregation patterns of (Gly-Pro)47, (Gly-Ala)50, and (Gly-Arg)50 fused to fluorescent proteins in samples prepared from D. melanogaster, and (Gly-Ala)50 in C. elegans, using AU-FDS and SDD-AGE. Results suggest that (GP)47 is largely monomeric. In contrast, (GA)50 forms both intermediate and large-scale aggregates. (GR)50 is partially monomeric with some aggregation noted in SDD-AGE analysis. The aggregation of this DPR is likely to represent co-aggregated states with DNA and/or RNA. The power of these methods is the ability to gather data on aggregation patterns and characteristics in animal model systems, which may then be used to interpret the mitigation of aggregation through genetic or molecular therapeutic interventions.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Nicole R Cunningham
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Jeanne M Quinn
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Danielle R Jacobsen
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - F Jay Garcia
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Sierra M Galindo
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | | | - Thomas M Laue
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA
| | - Robert Fairman
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA.
| |
Collapse
|
2
|
Beasley M, Stonebraker AR, Hasan I, Kapp KL, Liang BJ, Agarwal G, Groover S, Sedighi F, Legleiter J. Lipid Membranes Influence the Ability of Small Molecules To Inhibit Huntingtin Fibrillization. Biochemistry 2019; 58:4361-4373. [PMID: 31608620 DOI: 10.1021/acs.biochem.9b00739] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease (HD), are associated with specific proteins aggregating and depositing within tissues and/or cellular compartments. The aggregation of these proteins is characterized by the formation of extended, β-sheet rich fibrils, termed amyloid. In addition, a variety of other aggregate species also form, including oligomers and protofibrils. Specifically, HD is caused by the aggregation of the huntingtin (htt) protein that contains an expanded polyglutamine domain. Due to the link between protein aggregation and disease, small molecule aggregation inhibitors have been pursued as potential therapeutic agents. Two such small molecules are epigallocatechin 3-gallate (EGCG) and curcumin, both of which inhibit the fibril formation of several amyloid-forming proteins. However, amyloid formation is a complex process that is strongly influenced by the protein's environment, leading to distinct aggregation pathways. Thus, changes in the protein's environment may alter the effectiveness of aggregation inhibitors. A well-known modulator of amyloid formation is lipid membranes. Here, we investigated if the presence of lipid vesicles altered the ability of EGCG or curcumin to modulate htt aggregation and influence the interaction of htt with lipid membranes. The presence of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine or total brain lipid extract vesicles prevented the curcumin from inhibiting htt fibril formation. In contrast, EGCG's inhibition of htt fibril formation persisted in the presence of lipids. Collectively, these results highlight the complexity of htt aggregation and demonstrate that the presence of lipid membranes is a key modifier of the ability of small molecules to inhibit htt fibril formation.
Collapse
Affiliation(s)
- Maryssa Beasley
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States
| | - Alyssa R Stonebraker
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States
| | - Iraj Hasan
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States
| | - Kathryn L Kapp
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States
| | - Barry J Liang
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States
| | - Garima Agarwal
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia 26506 , United States.,Rockefeller Neurosciences Institute , West Virginia University , 1 Medical Center Drive , P.O. Box 9303, Morgantown , West Virginia 26505 , United States.,Department of Neuroscience , West Virginia University , 1 Medical Center Drive , P.O. Box 9303, Morgantown , West Virginia 26505 , United States
| |
Collapse
|
3
|
Zhang T, Nagel‐Steger L, Willbold D. Solution-Based Determination of Dissociation Constants for the Binding of Aβ42 to Antibodies. ChemistryOpen 2019; 8:989-994. [PMID: 31367507 PMCID: PMC6643301 DOI: 10.1002/open.201900167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 11/26/2022] Open
Abstract
Amyloid β-peptides (Aβ) play a major role in the pathogenesis of Alzheimer's disease. Therefore, numerous monoclonal antibodies against Aβ have been developed for basic and clinical research. The present study applied fluorescence based analytical ultracentrifugation and microscale thermophoresis to characterize the interaction between Aβ42 monomers and three popular, commercially available antibodies, namely 6E10, 4G8 and 12F4. Both methods allowed us to analyze the interactions at low nanomolar concentrations of analytes close to their dissociation constants (K D) as required for the study of high affinity interactions. Furthermore, the low concentrations minimized the unwanted self-aggregation of Aβ. Our study demonstrates that all three antibodies bind to Aβ42 monomers with comparable affinities in the low nanomolar range. K D values for Aβ42 binding to 6E10 and 4G8 are in good agreement with formerly reported values from SPR studies, while the K D for 12F4 binding to Aβ42 monomer is reported for the first time.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Luitgard Nagel‐Steger
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
4
|
Kokona B, Cunningham NR, Quinn JM, Fairman R. Aggregation Profiling of C9orf72 Dipeptide Repeat Proteins Transgenically Expressed in Drosophila melanogaster Using an Analytical Ultracentrifuge Equipped with Fluorescence Detection. Methods Mol Biol 2019; 2039:81-90. [PMID: 31342420 DOI: 10.1007/978-1-4939-9678-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent development of a fluorescence detection system for the analytical ultracentrifuge has allowed for the characterization of protein size and aggregation in complex mixtures. Protocols are described here to analyze protein aggregation seen in various human neurodegenerative diseases as they are presented in transgenic animal model systems. Proper preparation of crude extracts in appropriate sample buffers is critical for success in analyzing protein aggregation using sedimentation velocity methods. Furthermore, recent advances in sedimentation velocity analysis have led to data collection using single multispeed experiments, which may be analyzed using a wide distribution analysis approach. In this chapter, we describe the use of these new sedimentation velocity methods for faster determination of a wider range of sizes. In Chapter 7 of this book, we describe how agarose gel electrophoresis can be used to complement the analytical ultracentrifugation work, often as a prelude to careful biophysical analysis to help screen conditions in order to improve the success of sedimentation velocity experiments.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Jeanne M Quinn
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, PA, USA.
| |
Collapse
|
5
|
Cunningham NR, Kokona B, Quinn JM, Fairman R. Size Analysis of C9orf72 Dipeptide Repeat Proteins Expressed in Drosophila melanogaster Using Semidenaturing Detergent Agarose Gel Electrophoresis. Methods Mol Biol 2019; 2039:91-101. [PMID: 31342421 DOI: 10.1007/978-1-4939-9678-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This chapter supplements Chapter 6 on sample preparation and analysis using an analytical ultracentrifuge with fluorescence detection. In this related chapter, we describe how semidenaturing detergent agarose gel electrophoresis can be used to complement the analytical ultracentrifugation work, often as a prelude to careful biophysical analysis to help screen conditions to improve the success of sedimentation velocity experiments. We describe preparation of crude lysates made using Drosophila melanogaster and provide a protocol giving detailed instructions for successful fractionation of protein aggregates using SDD-AGE. While limited in resolving power, this method can identify fractionation in three pools based on sample migration in the gel: that of a monomer or limiting small oligomer species; intermediate aggregation pools, which are typically heterogeneous, represented as high retention smears; and large-scale aggregation, found caught up in the wells.
Collapse
Affiliation(s)
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Jeanne M Quinn
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, PA, USA.
| |
Collapse
|