1
|
Zeng Z, Ni J, Huang Z, Tan Q. Expression and functional analysis of Fushi Tarazu transcription factor 1 (FTZ-F1) in the regulation of steroid hormones during the gonad development of Fujian Oyster, Crassostrea angulata. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111668. [PMID: 38797241 DOI: 10.1016/j.cbpa.2024.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Crassostrea angulata, a major shellfish cultivated in Southern China, has experienced a notable surge in commercial value in recent years. Understanding the molecular mechanisms governing their reproductive processes holds significant implications for advancing aquaculture practices. In this study, we cloned the orphan nuclear receptor gene, Fushi Tarazu transcription factor 1 (FTZ-F1), of C. angulata and investigated its functional role in the gonadal development. The full-length cDNA of FTZ-F1 spans 2357 bp and encodes a protein sequence of 530 amino acids. Notably, the amino acid sequence of FTZ-F1 in C. angulata shares remarkable similarity with its homologues in other species, particularly in the DNA-binding region (>90%) and ligand-binding region (>44%). In C. angulata, the highest expression level of FTZ-F1 was observed in the ovary, exhibiting more than a 200-fold increase during the maturation stage compared to the initiation stage (P < 0.001). Specifically, FTZ-F1 was mainly expressed in the follicular cells surrounding the oocytes of C. angulata. Upon inhibiting FTZ-F1 gene expression in C. angulata through RNA interference (RNAi), a substantial reduction in the expression of genes involved in the synthesis of sex steroids in the gonads, including 3β-HSD, Cyp17, and follistatin, was observed. In addition, estradiol (E2) and testosterone (T) levels also showed a decrease upon FTZ-F1 silencing, resulting in a delayed gonadal development. These results indicate that FTZ-F1 acts as a steroidogenic factor, participating in the synthesis and regulation of steroid hormones and thus playing an important role in the reproductive and endocrine systems within oysters.
Collapse
Affiliation(s)
- Zhen Zeng
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Jianbin Ni
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Qianglai Tan
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China.
| |
Collapse
|
2
|
Kolonko-Adamska M, Zawadzka-Kazimierczuk A, Bartosińska-Marzec P, Koźmiński W, Popowicz G, Krężel A, Ożyhar A, Greb-Markiewicz B. Interaction patterns of methoprene-tolerant and germ cell-expressed Drosophila JH receptors suggest significant differences in their functioning. Front Mol Biosci 2023; 10:1215550. [PMID: 37654797 PMCID: PMC10465699 DOI: 10.3389/fmolb.2023.1215550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Methoprene-tolerant (Met) and germ cell-expressed (Gce) proteins were shown to be juvenile hormone (JH) receptors of Drosophila melanogaster with partially redundant functions. We raised the question of where the functional differentiation of paralogs comes from. Therefore, we tested Met and Gce interaction patterns with selected partners. In this study, we showed the ability of Gce and its C-terminus (GceC) to interact with 14-3-3 in the absence of JH. In contrast, Met or Met C-terminus (MetC) interactions with 14-3-3 were not observed. We also performed a detailed structural analysis of Met/Gce interactions with the nuclear receptor fushi tarazu factor-1 (Ftz-F1) ligand-binding domain. We showed that GceC comprising an Ftz-F1-binding site and full-length protein interacts with Ftz-F1. In contrast to Gce, only MetC (not full-length Met) can interact with Ftz-F1 in the absence of JH. We propose that the described differences result from the distinct tertiary structure and accessibility of binding sites in the full-length Met/Gce. Moreover, we hypothesize that each interacting partner can force disordered MetC and GceC to change the structure in a partner-specific manner. The observed interactions seem to determine the subcellular localization of Met/Gce by forcing their translocation between the nucleus and the cytoplasm, which may affect the activity of the proteins. The presented differences between Met and Gce can be crucial for their functional differentiation during D. melanogaster development and indicate Gce as a more universal and more active paralog. It is consistent with the theory indicating gce as an ancestor gene.
Collapse
Affiliation(s)
- M. Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - A. Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - P. Bartosińska-Marzec
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - W. Koźmiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - G. Popowicz
- Helmholtz Zentrum München, Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - A. Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - A. Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - B. Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
3
|
Discrepancy in interactions and conformational dynamics of pregnane X receptor (PXR) bound to an agonist and a novel competitive antagonist. Comput Struct Biotechnol J 2022; 20:3004-3018. [PMID: 35782743 PMCID: PMC9218138 DOI: 10.1016/j.csbj.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
|
4
|
Beachum AN, Whitehead KM, McDonald SI, Phipps DN, Berghout HE, Ables ET. Orphan nuclear receptor ftz-f1 (NR5A3) promotes egg chamber survival in the Drosophila ovary. G3-GENES GENOMES GENETICS 2021; 11:6114459. [PMID: 33693603 PMCID: PMC8022936 DOI: 10.1093/g3journal/jkab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022]
Abstract
Gamete production in mammals and insects is controlled by cell signaling pathways that facilitate communication between germ cells and somatic cells. Nuclear receptor signaling is a key mediator of many aspects of reproduction, including gametogenesis. For example, the NR5A subfamily of nuclear receptors is essential for gonad development and sex steroid production in mammals. Despite the original identification of the NR5A subfamily in the model insect Drosophila melanogaster, it has been unclear whether Drosophila NR5A receptors directly control oocyte production. Ftz-f1 is expressed throughout the ovary, including in germline stem cells, germline cysts, and several populations of somatic cells. We show that ftz-f1 is required in follicle cells prior to stage 10 to promote egg chamber survival at the mid-oogenesis checkpoint. Our data suggest that egg chamber death in the absence of ftz-f1 is due, at least in part, to failure of follicle cells to exit the mitotic cell cycle or failure to accumulate oocyte-specific factors in the germline. Taken together, these results show that, as in mammals, the NR5A subfamily promotes maximal reproductive output in Drosophila. Our data underscore the importance of nuclear receptors in the control of reproduction and highlight the utility of Drosophila oogenesis as a key model for unraveling the complexity of nuclear receptor signaling in gametogenesis.
Collapse
Affiliation(s)
- Allison N Beachum
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Hanna E Berghout
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Corresponding author: Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, 553 Science & Technology Building, Greenville, NC 27858, USA.
| |
Collapse
|
5
|
Kolonko M, Bystranowska D, Taube M, Kozak M, Bostock M, Popowicz G, Ożyhar A, Greb-Markiewicz B. The intrinsically disordered region of GCE protein adopts a more fixed structure by interacting with the LBD of the nuclear receptor FTZ-F1. Cell Commun Signal 2020; 18:180. [PMID: 33153474 PMCID: PMC7643343 DOI: 10.1186/s12964-020-00662-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila melanogaster Germ cell-expressed protein (GCE) is a paralog of the juvenile hormone (JH) receptor - Methoprene tolerant protein (MET). Both proteins mediate JH function, preventing precocious differentiation during D. melanogaster development. Despite that GCE and MET are often referred to as equivalent JH receptors, their functions are not fully redundant and show tissue specificity. Both proteins belong to the family of bHLH-PAS transcription factors. The similarity of their primary structure is limited to defined bHLH and PAS domains, while their long C-terminal fragments (GCEC, METC) show significant differences and are expected to determine differences in GCE and MET protein activities. In this paper we present the structural characterization of GCEC as a coil-like intrinsically disordered protein (IDP) with highly elongated and asymmetric conformation. In comparison to previously characterized METC, GCEC is less compacted, contains more molecular recognition elements (MoREs) and exhibits a higher propensity for induced folding. The NMR shifts perturbation experiment and pull-down assay clearly demonstrated that the GCEC fragment is sufficient to form an interaction interface with the ligand binding domain (LBD) of the nuclear receptor Fushi Tarazu factor-1 (FTZ-F1). Significantly, these interactions can force GCEC to adopt more fixed structure that can modulate the activity, structure and functions of the full-length receptor. The discussed relation of protein functionality with the structural data of inherently disordered GCEC fragment is a novel look at this protein and contributes to a better understanding of the molecular basis of the functions of the C-terminal fragments of the bHLH-PAS family. Video abstract.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland.,National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392, Krakow, Poland
| | - Mark Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Grzegorz Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|