1
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
2
|
Pomin VH, Rajarathnam K. NMR Methods for Characterization of Glycosaminoglycan-Chemokine Interactions. Methods Mol Biol 2023; 2597:143-157. [PMID: 36374420 DOI: 10.1007/978-1-0716-2835-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Humans express around 50 chemokines that play crucial roles in human pathophysiology from combating infection to immune surveillance by directing and trafficking leukocytes to the target tissue. Glycosaminoglycans (GAGs) regulate chemokine function by tuning monomer/dimer levels, chemotactic/haptotactic gradients, and how they are presented to their receptors. Knowledge of the structural features of the chemokine-GAG complexes and GAG properties that define chemokine interactions is essential not only to understand chemokine function, but also for developing drugs that disrupt chemokine-GAG crosstalk and thereby impart protection against dysregulated host defense. Nuclear magnetic resonance (NMR) spectroscopy has proven to be quite useful for providing residue-specific interactions, binding geometry and models, specificity, and affinity. Multiple NMR methods have been used including (1) chemical shift perturbation (CSP), (2) saturation transfer difference (STD), and (3) paramagnetic relaxation enhancement (PRE) techniques. In this chapter, we describe how NMR CSP, STD, and PRE can be best used for characterizing chemokine-GAG interactions.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Williams RV, Huang C, Moremen KW, Amster IJ, Prestegard JH. NMR analysis suggests the terminal domains of Robo1 remain extended but are rigidified in the presence of heparan sulfate. Sci Rep 2022; 12:14769. [PMID: 36042257 PMCID: PMC9427851 DOI: 10.1038/s41598-022-18769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Human roundabout 1 (hRobo1) is an extracellular receptor glycoprotein that plays important roles in angiogenesis, organ development, and tumor progression. Interaction between hRobo1 and heparan sulfate (HS) has been shown to be essential for its biological activity. To better understand the effect of HS binding we engineered a lanthanide-binding peptide sequence (Loop) into the Ig2 domain of hRobo1. Native mass spectrometry was used to verify that loop introduction did not inhibit HS binding or conformational changes previously suggested by gas phase ion mobility measurements. NMR experiments measuring long-range pseudocontact shifts were then performed on 13C-methyl labeled hRobo1-Ig1-2-Loop in HS-bound and unbound forms. The magnitude of most PCSs for methyl groups in the Ig1 domain increase in the bound state confirming a change in the distribution of interdomain geometries. A grid search over Ig1 orientations to optimize the fit of data to a single conformer for both forms produced two similar structures, both of which differ from existing X-ray crystal structures and structures inferred from gas-phase ion mobility measurements. The structures and degree of fit suggest that the hRobo1-Ig1-2 structure changes slightly and becomes more rigid on HS binding. This may have implications for Robo-Slit signaling.
Collapse
Affiliation(s)
- Robert V Williams
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - I Jonathan Amster
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA, USA
| | - James H Prestegard
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Lauth LM, Voigt B, Bhatia T, Machner L, Balbach J, Ott M. Heparin promotes rapid fibrillation of the basic Parathyroid Hormone at physiological pH. FEBS Lett 2022; 596:2928-2939. [PMID: 35903816 DOI: 10.1002/1873-3468.14455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
In acidic secretory granules of mammalian cells, peptide hormones including the parathyroid hormone (PTH) are presumably stored in the form of functional amyloid fibrils. Mature PTH, however, is considerably positively charged in acidic environments, a condition known to impede unassisted self-aggregation into fibrils. Here, we studied the role of the polyanion heparin on promoting fibril formation of PTH. Employing ITC, CD spectroscopy, NMR, SAXS and fluorescence-based assays we could demonstrate that heparin binds PTH with submicromolar affinity and facilitates its conversion into fibrillar seeds, enabling rapid formation of amyloid fibrils under acidic conditions. In absence of heparin, PTH remained in a soluble monomeric state. We suspect that heparin-like surfaces are required in vivo to convert PTH efficiently into fibrillar deposits.
Collapse
Affiliation(s)
- Luca M Lauth
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Bruno Voigt
- Department of Biophysics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Twinkle Bhatia
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Lisa Machner
- Department of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jochen Balbach
- Department of Biophysics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Maria Ott
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Zhang B, Chi L. Chondroitin Sulfate/Dermatan Sulfate-Protein Interactions and Their Biological Functions in Human Diseases: Implications and Analytical Tools. Front Cell Dev Biol 2021; 9:693563. [PMID: 34422817 PMCID: PMC8377502 DOI: 10.3389/fcell.2021.693563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are linear anionic polysaccharides that are widely present on the cell surface and in the cell matrix and connective tissue. CS and DS chains are usually attached to core proteins and are present in the form of proteoglycans (PGs). They not only are important structural substances but also bind to a variety of cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillary glycoproteins to execute series of important biological functions. CS and DS exhibit variable sulfation patterns and different sequence arrangements, and their molecular weights also vary within a large range, increasing the structural complexity and diversity of CS/DS. The structure-function relationship of CS/DS PGs directly and indirectly involves them in a variety of physiological and pathological processes. Accumulating evidence suggests that CS/DS serves as an important cofactor for many cell behaviors. Understanding the molecular basis of these interactions helps to elucidate the occurrence and development of various diseases and the development of new therapeutic approaches. The present article reviews the physiological and pathological processes in which CS and DS participate through their interactions with different proteins. Moreover, classic and emerging glycosaminoglycan (GAG)-protein interaction analysis tools and their applications in CS/DS-protein characterization are also discussed.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Künze G, Huster D, Samsonov SA. Investigation of the structure of regulatory proteins interacting with glycosaminoglycans by combining NMR spectroscopy and molecular modeling - the beginning of a wonderful friendship. Biol Chem 2021; 402:1337-1355. [PMID: 33882203 DOI: 10.1515/hsz-2021-0119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022]
Abstract
The interaction of regulatory proteins with extracellular matrix or cell surface-anchored glycosaminoglycans (GAGs) plays important roles in molecular recognition, wound healing, growth, inflammation and many other processes. In spite of their high biological relevance, protein-GAG complexes are significantly underrepresented in structural databases because standard tools for structure determination experience difficulties in studying these complexes. Co-crystallization with subsequent X-ray analysis is hampered by the high flexibility of GAGs. NMR spectroscopy experiences difficulties related to the periodic nature of the GAGs and the sparse proton network between protein and GAG with distances that typically exceed the detection limit of nuclear Overhauser enhancement spectroscopy. In contrast, computer modeling tools have advanced over the last years delivering specific protein-GAG docking approaches successfully complemented with molecular dynamics (MD)-based analysis. Especially the combination of NMR spectroscopy in solution providing sparse structural constraints with molecular docking and MD simulations represents a useful synergy of forces to describe the structure of protein-GAG complexes. Here we review recent methodological progress in this field and bring up examples where the combination of new NMR methods along with cutting-edge modeling has yielded detailed structural information on complexes of highly relevant cytokines with GAGs.
Collapse
Affiliation(s)
- Georg Künze
- Center for Structural Biology, Vanderbilt University, 465 21st Ave S, 5140 MRB3, Nashville, TN37240, USA.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN37235, USA.,Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, D-04103Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107Leipzig, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308Gdańsk, Poland
| |
Collapse
|
7
|
Prestegard JH. A perspective on the PDB's impact on the field of glycobiology. J Biol Chem 2021; 296:100556. [PMID: 33744289 PMCID: PMC8058564 DOI: 10.1016/j.jbc.2021.100556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Structures deposited in the Protein Data Bank (PDB) facilitate our understanding of many biological processes including those that fall under the general category of glycobiology. However, structure-based studies of how glycans affect protein structure, how they are synthesized, and how they regulate other biological processes remain challenging. Despite the abundant presence of glycans on proteins and the dense layers of glycans that surround most of our cells, structures containing glycans are underrepresented in the PDB. There are sound reasons for this, including difficulties in producing proteins with well-defined glycosylation and the tendency of mobile and heterogeneous glycans to inhibit crystallization. Nevertheless, the structures we do find in the PDB, even some of the earliest deposited structures, have had an impact on our understanding of function. I highlight a few examples in this review and point to some promises for the future. Promises include new structures from methodologies, such as cryo-EM, that are less affected by the presence of glycans and experiment-aided computational methods that build on existing structures to provide insight into the many ways glycans affect biological function.
Collapse
Affiliation(s)
- James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
8
|
Walkowiak JJ, Ballauff M, Zimmermann R, Freudenberg U, Werner C. Thermodynamic Analysis of the Interaction of Heparin with Lysozyme. Biomacromolecules 2020; 21:4615-4625. [DOI: 10.1021/acs.biomac.0c00780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jacek Janusz Walkowiak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
9
|
Vignovich WP, Pomin VH. Saturation Transfer Difference in Characterization of Glycosaminoglycan-Protein Interactions. SLAS Technol 2020; 25:307-319. [PMID: 32452261 DOI: 10.1177/2472630320921130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel methods in nuclear magnetic resonance (NMR) spectroscopy have recently been developed to investigate the binding properties of intermolecular complexes endowed with biomedical functions. Among these methods is the saturation transfer difference (STD), which enables the mapping of specific binding motifs of functional ligands. STD can efficiently uncover the specific and preferential binding sites of these ligands in their intermolecular complexes. This is particularly useful in the case of glycosaminoglycans (GAGs), a group of sulfated polysaccharides that play pivotal roles in various biological and pathological processes. The activity of GAGs is ultimately mediated through molecular interactions with key functional proteins, namely, GAG-binding proteins (GBPs). The quality of the GAG-GBP interactions depends on sulfation patterns, oligosaccharide length, and the composing monosaccharides of GAGs. Through STD NMR, information about the atoms of the GAG ligands involved in the complexes is provided. Here we highlight the latest achievements of the literature using STD NMR on GAG oligosaccharide-GBP complexes. Interestingly, most of the GBPs studied so far by STD NMR belong to one of the three major classes: coagulation factors, growth factors, or chemokine/cytokines. Unveiling the structural requirements of GAG ligands in bindings with their protein partners is a crucial step to understand the biochemical and medical actions of GAGs. This process is also a requirement in GAG-based drug discovery and development.
Collapse
Affiliation(s)
- William P Vignovich
- BioMolecular Sciences Department, School of Pharmacy, the University of Mississippi, Oxford, MS, USA
| | - Vitor H Pomin
- BioMolecular Sciences Department, School of Pharmacy, the University of Mississippi, Oxford, MS, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, the University of Mississippi, Oxford, MS, USA
| |
Collapse
|
10
|
Vilstrup J, Simonsen A, Birkefeldt T, Strandbygård D, Lyngsø J, Pedersen JS, Thirup S. Crystal and solution structures of fragments of the human leucocyte common antigen-related protein. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:406-417. [PMID: 32355037 DOI: 10.1107/s2059798320003885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 01/10/2023]
Abstract
Leucocyte common antigen-related protein (LAR) is a post-synaptic type I transmembrane receptor protein that is important for neuronal functionality and is genetically coupled to neuronal disorders such as attention deficit hyperactivity disorder (ADHD). To understand the molecular function of LAR, structural and biochemical studies of protein fragments derived from the ectodomain of human LAR have been performed. The crystal structure of a fragment encompassing the first four FNIII domains (LARFN1-4) showed a characteristic L shape. SAXS data suggested limited flexibility within LARFN1-4, while rigid-body refinement of the SAXS data using the X-ray-derived atomic model showed a smaller angle between the domains defining the L shape compared with the crystal structure. The capabilities of the individual LAR fragments to interact with heparin was examined using microscale thermophoresis and heparin-affinity chromatography. The results showed that the three N-terminal immunoglobulin domains (LARIg1-3) and the four C-terminal FNIII domains (LARFN5-8) both bound heparin, while LARFN1-4 did not. The low-molecular-weight heparin drug Innohep induced a shift in hydrodynamic volume as assessed by size-exclusion chromatography of LARIg1-3 and LARFN5-8, while the chemically defined pentameric heparin drug Arixtra did not. Together, the presented results suggest the presence of an additional heparin-binding site in human LAR.
Collapse
Affiliation(s)
- Joachim Vilstrup
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Amanda Simonsen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Thea Birkefeldt
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Dorthe Strandbygård
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Jeppe Lyngsø
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Søren Thirup
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Gimeno A, Valverde P, Ardá A, Jiménez-Barbero J. Glycan structures and their interactions with proteins. A NMR view. Curr Opin Struct Biol 2019; 62:22-30. [PMID: 31835069 PMCID: PMC7322516 DOI: 10.1016/j.sbi.2019.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022]
Abstract
Carbohydrate molecules are essential actors in key biological events, being involved as recognition points for cell-cell and cell-matrix interactions related to health and disease. Despite outstanding advances in cryoEM, X-ray crystallography and NMR still remain the most employed techniques to unravel their conformational features and to describe the structural details of their interactions with biomolecular receptors. Given the intrinsic flexibility of saccharides, NMR methods are of paramount importance to deduce the extent of motion around their glycosidic linkages and to explore their receptor-bound conformations. We herein present our particular view on the latest advances in NMR methodologies that are permitting to magnify their applications for deducing glycan conformation and dynamics and understanding the recognition events in which there are involved.
Collapse
Affiliation(s)
- Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Pablo Valverde
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, University of the Basque Country, UPV/EHU, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
12
|
Stender EG, Birch J, Kjeldsen C, Nielsen LD, Duus JØ, Kragelund BB, Svensson B. Alginate Trisaccharide Binding Sites on the Surface of β-Lactoglobulin Identified by NMR Spectroscopy: Implications for Molecular Network Formation. ACS OMEGA 2019; 4:6165-6174. [PMID: 31459761 PMCID: PMC6647953 DOI: 10.1021/acsomega.8b03532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 05/08/2023]
Abstract
β-lactoglobulin (BLG) is a promiscuous protein in terms of ligand interactions, having several binding sites reported for hydrophobic biomolecules such as fatty acids, lipids, and vitamins as well as detergents. BLG also interacts with neutral and anionic oligo- and polysaccharides for which the binding sites remain to be identified. The multivalency offered by these carbohydrate ligands is expected to facilitate coacervation, an electrostatically driven liquid-liquid phase separation. Using heteronuclear single quantum coherence NMR spectroscopy and monitoring chemical shift perturbations, we observed specific binding sites of modest affinity for alginate oligosaccharides (AOSs) prepared by alginate lyase degradation. Two different AOS binding sites (site 1 and site 2) centered around K75 and K101 were identified for monomeric BLG isoform A (BLGA) at pH 2.65. In contrast, only site 1 around K75 was observed for dimeric BLGA at pH 4.0. The data suggest a pH-dependent mechanism whereby both the BLGA dimer-monomer equilibrium and electrostatic interactions are exploited. This variability allows for control of coacervation and particle formation of BLGA/alginate mixtures via directed polysaccharide bridging of AOS binding sites and has implication for molecular network formation. The results are valuable for design of polyelectrolyte-based BLG particles and coacervates for carrying nutraceuticals and modulating viscosity in dairy products by use of alginates.
Collapse
Affiliation(s)
- Emil G.
P. Stender
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building
224, DK-2800 Kgs. Lyngby, Denmark
| | - Johnny Birch
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building
224, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Kjeldsen
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, Building
207, DK-2800 Kgs. Lyngby, Denmark
| | - Lau D. Nielsen
- Structural
Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein
Science, Department of Biology, University
of Copenhagen, Ole Maaløes
Vej 5, DK-2200 Copenhagen
N, Denmark
| | - Jens Ø. Duus
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, Building
207, DK-2800 Kgs. Lyngby, Denmark
| | - Birthe B. Kragelund
- Structural
Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein
Science, Department of Biology, University
of Copenhagen, Ole Maaløes
Vej 5, DK-2200 Copenhagen
N, Denmark
- E-mail: . phone: +45 3532 2081 (B.S.)
| | - Birte Svensson
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building
224, DK-2800 Kgs. Lyngby, Denmark
- E-mail: . phone: +45 4525 2740 (B.B.K.)
| |
Collapse
|
13
|
Zhang S, Zhou G, Zhang X, Chen D, Liu J, Liu X. Establishment of highly sensitive analytical method for chondroitin sulfate by flow injection chemiluminescence. Carbohydr Polym 2019; 206:504-510. [PMID: 30553351 DOI: 10.1016/j.carbpol.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 01/29/2023]
Abstract
A simple and sensitive flow injection chemiluminescence (FI-CL) method has been developed for the determination of chondroitin sulfate (CS). The method is based on the sensitization effect of enzymatic products of CS on the luminol-H2O2 system. Experimental parameters affecting FI-CL method such as concentrations of luminol, H2O2 and NaOH and the standing time of luminol alkaline solution were optimized. Under optimum conditions, the calibration plot between CS concentration and the change of CL intensity was linear in the range of 25 ng/mL∼250 ng/mL. The limit of detection (LOD) was 5 ng/mL and the average relative standard deviation (RSD) of CL intensity was 2.5%. The method was successfully applied to the quantitative analysis of CS concentration in drugs. Compared with the reported methods so far, the established method is simple, sensitive, accurate and rapid.
Collapse
Affiliation(s)
- Siying Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Guanglian Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China.
| | - Xiao Zhang
- Quality Assurance Department, Shandong Lukang Pharmaceutical Co., Ltd., Jining 272021, China.
| | - Dong Chen
- Quality Assurance Department, Shandong Lukang Pharmaceutical Co., Ltd., Jining 272021, China.
| | - Jian Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, China.
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
14
|
Glycosaminoglycan-Protein Interactions by Nuclear Magnetic Resonance (NMR) Spectroscopy. Molecules 2018; 23:molecules23092314. [PMID: 30208595 PMCID: PMC6225283 DOI: 10.3390/molecules23092314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most utilized and informative analytical techniques for investigating glycosaminoglycan (GAG)-protein complexes. NMR methods that are commonly applied to GAG-protein systems include chemical shift perturbation, saturation transfer difference, and transferred nuclear Overhauser effect. Although these NMR methods have revealed valuable insight into the protein-GAG complexes, elucidating high-resolution structural and dynamic information of these often transient interactions remains challenging. In addition, preparation of structurally homogeneous and isotopically enriched GAG ligands for structural investigations continues to be laborious. As a result, understanding of the structure-activity relationship of GAGs is still primitive. To overcome these deficiencies, several innovative NMR techniques have been developed lately. Here, we review some of the commonly used techniques along with more novel methods such as waterLOGSY and experiments to examine structure and dynamic of lysine and arginine side chains to identify GAG-binding sites. We will also present the latest technology that is used to produce isotopically enriched as well as paramagnetically tagged GAG ligands. Recent results that were obtained from solid-state NMR of amyloid’s interaction with GAG are also presented together with a brief discussion on computer assisted modeling of GAG-protein complexes using sparse experimental data.
Collapse
|