1
|
Li Y, He X, Li S, Chen S, Zhao Z, Mu Y, Zhao AZ, Zhou S, Li F. The phosphodiesterase-4 inhibitor Zl-n-91 suppresses glioblastoma growth via EGR1/PTEN/AKT pathway. Eur J Pharmacol 2025; 988:177230. [PMID: 39732358 DOI: 10.1016/j.ejphar.2024.177230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor, which presents significant challenges for treatment in clinical settings. Phosphodiesterase 4 (PDE4) inhibitors can prevent the degradation of cAMP and have been used as a potential targeted therapeutic approach for different cancer types. However, their clinical use is restricted by side effects such as nausea and vomiting. Herein, we investigated the efficacy and therapeutic mechanisms of a specific PDE4 inhibitor, Zl-n-91, on GBM cells. The results demonstrated that Zl-n-91 exhibited greater effectiveness than the well-known PDE4 inhibitor Rolipram in treating GBM. It can notably suppress the proliferation of GBM cells by inducing G0/G1 phase arrest and apoptosis. Additionally, Zl-n-91 significantly inhibited the growth of subcutaneous glioma xenografts. Mechanistically, Zl-n-91 treatment increased the expression and nuclear transcription of Early growth response (EGR1), while knockdown of EGR1 could decrease PTEN levels and increase p-AKT levels, restoring the inhibition of cell proliferation induced by Zl-n-91. Collectively, we revealed for the first time that PDE4 inhibitor Zl-n-91 could inhibit the growth of GBM cells through the EGR1/PTEN/AKT signaling pathway. Zl-n-91, a specific PDE4 inhibitor, may be a promising therapeutic candidate for GBM.
Collapse
Affiliation(s)
- Yuyu Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xin He
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shiri Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shenjie Chen
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Allan Z Zhao
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan, 528308, PR China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
3
|
Li G, He D, Qian X, Liu Y, Ou Y, Li M, Song L, Xu Z, Zhang G, Wang J, Pan W, Chen J, Zhang Y, Wu JQ, Chen D, Chen C, Peng S, Yao H, Ke H. Development of selective heterocyclic PDE4 inhibitors for treatment of psoriasis. Eur J Med Chem 2024; 280:116930. [PMID: 39383652 DOI: 10.1016/j.ejmech.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Psoriasis is a chronic autoimmune disease that badly affects the life quality of patients and their families. Inadequate efficacy, safety risks, high cost and low compliance of current psoriasis drugs urge development of novel small molecular drugs. In this study, two series of 37 novel compounds were designed and synthesized as inhibitors of phosphodiesterase 4 (PDE4) that specifically hydrolyzes second messenger cAMP and is an effective target for treatment of inflammatory diseases. Comprehensive structural-activity optimization led to finding of inhibitor 2e with IC50 = 2.4 nM for PDE4D and >4100-fold selectivity over other PDE families. Compound 2e inhibited the release of TNF-α (IC50 = 21.36 μM) and IL-6 (IC50 = 29.22 μM) in the LPS-stimulated Raw264.7 cells. Topical application of 2e exhibited remarkable therapeutic efficacy in imiquimod-induced psoriasis mice model, suggesting that 2e is a strong drug candidate for treatment of psoriasis.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Xudong Qian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Yuanhui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Liyan Song
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Zichen Xu
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - Guoping Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jun Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Wei Pan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jia-Qiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Dandan Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Cheng Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Siying Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Ahmad N, Lesa KN, Ujiantari NSO, Sudarmanto A, Fakhrudin N, Ikawati Z. Development of White Cabbage, Coffee, and Red Onion Extracts as Natural Phosphodiesterase-4B (PDE4B) Inhibitors for Cognitive Dysfunction: In Vitro and In Silico Studies. Adv Pharmacol Pharm Sci 2024; 2024:1230239. [PMID: 38808119 PMCID: PMC11132833 DOI: 10.1155/2024/1230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Human cognition fundamentally depends on memory. Alzheimer's disease exhibits a strong correlation with a decline in this factor. Phosphodiesterase-4 B (PDE4B) plays a crucial role in neurodegenerative disorders, and its inhibition is one of the promising approaches for memory enhancement. This study aimed to identify secondary metabolites in white cabbage, coffee, and red onion extracts and identify their molecular interaction with PDE4B by in silico and in vitro experiments. Crushed white cabbage and red onion were macerated separately with ethanol to yield respective extracts, and ground coffee was boiled with water to produce aqueous extract. Thin layer chromatography (TLC)-densitometry was used to examine the phytochemicals present in white cabbage, coffee, and red onion extracts. Molecular docking studies were performed to know the interaction of test compounds with PDE4B. TLC-densitometry analysis showed that chlorogenic acid and quercetin were detected as major compounds in coffee and red onion extracts, respectively. In silico studies revealed that alpha-tocopherol (binding free energy (∆Gbind) = -38.00 kcal/mol) has the strongest interaction with PDE4B whereas chlorogenic acid (∆Gbind = -21.50 kcal/mol) and quercetin (∆Gbind = -17.25 kcal/mol) exhibited moderate interaction. In vitro assay showed that the combination extracts (cabbage, coffee, and red onion) had a stronger activity (half-maximal inhibitory concentration (IC50) = 0.12 ± 0.03 µM) than combination standards (sinigrin, chlorogenic acid, and quercetin) (IC50 = 0.17 ± 0.03 µM) and rolipram (IC50 = 0.15 ± 0.008 µM). Thus, the combination extracts are a promising cognitive enhancer by blocking PDE4B activity.
Collapse
Affiliation(s)
- Nazir Ahmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Kaisun Nesa Lesa
- Department of Food and Nutritional Science, Khulna City Corporation Women's College, Affiliated to Khulna University, Khulna, Bangladesh
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pediatrics, Nihon University Hospital, Tokyo, Japan
- Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Navista Sri Octa Ujiantari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Ari Sudarmanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia
| | - Zullies Ikawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
5
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Mao P, Huang C, Li Y, Zhao Y, Zhou S, Zhao Z, Mu Y, Wang L, Li F, Zhao AZ. Pharmacological targeting of type phosphodiesterase 4 inhibits the development of acute myeloid leukemia by impairing mitochondrial function through the Wnt/β-catenin pathway. Biomed Pharmacother 2023; 157:114027. [PMID: 36436494 DOI: 10.1016/j.biopha.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is prone to drug-resistant relapse with a low 5-year survival rate. New therapeutic modalities are sorely needed to provide hope for AML relapse patients. Herein, we demonstrated a specific inhibitor of type 4 phosphodiesterase (PDE4), Zl-n-91, could significantly reduce the proliferation of AML cells, block DNA replication process, and increase AML cell death. Zl-n-91 also impeded the growth of subcutaneous xenograft and prolonged the survival of the MLL-AF9-driven AML model. Bioinformatic analysis revealed that elevated mitochondrial gene signatures inversely correlate with the survival of AML patients; and importantly, Zl-n-91 strongly suppressed the function of mitochondria. In addition, this PDE4 inhibitor induced alterations in multiple signaling pathways, including the reduction of β-catenin activity. Stimulation of the Wnt/β-catenin pathway could attenuate the inhibitory effect of Zl-n-91 on AML cell proliferation as well as mitochondrial function. Taken together, we revealed for the first time that targeting PDE4 activity could attenuate mitochondrial function through a Wnt/β-catenin pathway, which in turn would block the growth of AML cells. Specific PDE4 inhibitors can potentially serve as a new treatment modality for AML patients.
Collapse
Affiliation(s)
- Ping Mao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Changhao Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yuyu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yuanyi Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Lina Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China.
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
7
|
ZL-n-91, a specific Phosphodiesterase-4 inhibitor, suppresses the growth of triple-negative breast cancer. Invest New Drugs 2022; 40:875-883. [PMID: 35674866 DOI: 10.1007/s10637-022-01258-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that frequently develops resistance to chemotherapy. A new approach to treating TNBC is required to improve patient survival. Phosphodiesterase-4 (PDE4) is an enzyme that is predominantly involved in the modulation of intracellular signaling mediated by cAMP. Although the efficacy of PDE4 inhibitors in several human inflammatory diseases is well documented, their clinical utility has been limited by side effects, including nausea and emesis. Recently, PDE4 has been used as a potential therapeutic target for different cancer types. In the present study, we investigated the anticancer effects of a novel PDE4 inhibitor ZL-n-91 on TNBC and the underlying mechanism. We showed that ZL-n-91 inhibited the proliferation of TNBC cells, induced cell apoptosis, and caused cell cycle arrest. Western blot analysis showed that ZL-n-91 increased Bax level and reduced Bcl-2 expression. Furthermore, downregulation of the cell cycle-related proteins, such as CDK2, CDK4, cyclin D1, PCNA, p-RB, and ZL-n-91, significantly inhibited the transcription of DNA repair genes and triggered an intracellular DNA damage response. Moreover, ZL-n-91 prevented the growth of the transplanted MDA-MB-231 tumor xenograft in nude mice and increased the γ-H2AX expression. These data demonstrate the anticancer effects of ZL-n-91 on TNBC cells and suggest its potential use in anticancer therapy.
Collapse
|
8
|
Lugnier C. The Complexity and Multiplicity of the Specific cAMP Phosphodiesterase Family: PDE4, Open New Adapted Therapeutic Approaches. Int J Mol Sci 2022; 23:10616. [PMID: 36142518 PMCID: PMC9502408 DOI: 10.3390/ijms231810616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclic nucleotides (cAMP, cGMP) play a major role in normal and pathologic signaling. Beyond receptors, cyclic nucleotide phosphodiesterases; (PDEs) rapidly convert the cyclic nucleotide in its respective 5'-nucleotide to control intracellular cAMP and/or cGMP levels to maintain a normal physiological state. However, in many pathologies, dysregulations of various PDEs (PDE1-PDE11) contribute mainly to organs and tissue failures related to uncontrolled phosphorylation cascade. Among these, PDE4 represents the greatest family, since it is constituted by 4 genes with multiple variants differently distributed at tissue, cellular and subcellular levels, allowing different fine-tuned regulations. Since the 1980s, pharmaceutical companies have developed PDE4 inhibitors (PDE4-I) to overcome cardiovascular diseases. Since, they have encountered many undesired problems, (emesis), they focused their research on other PDEs. Today, increases in the knowledge of complex PDE4 regulations in various tissues and pathologies, and the evolution in drug design, resulted in a renewal of PDE4-I development. The present review describes the recent PDE4-I development targeting cardiovascular diseases, obesity, diabetes, ulcerative colitis, and Crohn's disease, malignancies, fatty liver disease, osteoporosis, depression, as well as COVID-19. Today, the direct therapeutic approach of PDE4 is extended by developing allosteric inhibitors and protein/protein interactions allowing to act on the PDE interactome.
Collapse
Affiliation(s)
- Claire Lugnier
- Section de Structures Biologiques, Pharmacologie et Enzymologie, CNRS/Unistra, CRBS, UR 3072, CEDEX, 67084 Strasbourg, France
| |
Collapse
|
9
|
Yao N, Jia Z, Tian Y, Hou S, Yang X, Han J, Duan Y, Liao C, Kong Y, Xie Z. Targeting the S2 Subsite Enables the Structure-Based Discovery of Novel Highly Selective Factor XIa Inhibitors. J Med Chem 2022; 65:4318-4334. [DOI: 10.1021/acs.jmedchem.1c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ningning Yao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Zhiping Jia
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yongbin Tian
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Shuzeng Hou
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
10
|
Bailly C. The traditional and modern uses of Selaginella tamariscina (P.Beauv.) Spring, in medicine and cosmetic: Applications and bioactive ingredients. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114444. [PMID: 34302944 DOI: 10.1016/j.jep.2021.114444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts of the plant Selaginella tamariscina (P.Beauv.) Spring (spike moss) are used for a long time in Asia, for the treatment of multiple diseases and conditions. Aqueous and alcoholic leave extracts are used by local communities. In China, the plant (Juan bai) is listed on the Pharmacopoeia. In South Korea, the use of this plant (Kwon Baek) is mentioned in the book Dongui-Bogam (Heo Jun 1613), at the origin of the Hyungsang medicine. S. tamariscina is traditionally used in Vietnam (mong lung rong), Thailand (dok hin), Philippines (pakong-tulog) and other Asian countries. AIM OF THE STUDY To provide an analysis of the multiple traditional and current uses of S. tamariscina extracts (STE) in the field of medicine and cosmetic. The review is also intended at identifying the main natural products at the origin of the many pharmacological properties reported with these extracts (anti-inflammatory, antioxidant, antidiabetic, antibacterial, antiallergic, anticancer effects). METHODS Extensive database retrieval, such as SciFinder and PubMed, was performed by using keywords like " Selaginella tamariscina", "spike moss", "Selaginellaceae ". Relevant textbooks, patents, reviews, and digital documents were consulted to collate all available scientific literature and to provide a complete science-based survey of the topic. RESULTS Different solvents and methods are used to prepare STE. The process can largely modify the natural product content and properties of the extracts. STE display a range of pharmacological effects, useful to treat metabolic disorders, several inflammatory diseases and various cancers. A specific carbonized extract (S. tamariscina carbonisatus) has shown hemostatic effects, whereas standard STE can promote blood circulation. Many patented STE-containing cosmetic preparations are reviewed here. Several biflavonoids (chiefly amentoflavone) and phenolic compounds (selaginellin derivatives) are primarily responsible for the observed pharmacological properties. Potent inhibitors of protein tyrosine phosphatase 1 B (PTP1B), phosphodiesterase-4 (PDE4), and repressor of pro-inflammatory cytokines expression have been identified from STE. CONCLUSION The traditional use of STE supports the research performed with this plant. There are robust experimental data, based on in vitro and in vivo models, documenting the use of STE to treat type 2 diabetes, several inflammatory diseases, and some cancers (in combination with standard chemotherapy). Selaginella tamariscina (P.Beauv.) is a prime reservoir for amentoflavone, and many other bioactive natural products. The interest of the plant in medicine and cosmetic is amply justified.
Collapse
|
11
|
Roflupram, a novel phosphodiesterase 4 inhibitor, inhibits lipopolysaccharide-induced neuroinflammatory responses through activation of the AMPK/Sirt1 pathway. Int Immunopharmacol 2020; 90:107176. [PMID: 33243606 DOI: 10.1016/j.intimp.2020.107176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/24/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023]
Abstract
Roflupram (ROF) is a novel phosphodiesterase 4 inhibitor. We previously found that ROF suppressed the production of pro-inflammatory factors in microglial cells; however, the underlying mechanisms are largely unknown. The present study aimed to elucidate the underlying molecular mechanisms of the anti-neuroinflammatory effects of ROF in lipopolysaccharide (LPS)-activated microglial cells and LPS-challenged mice. Treatment with ROF suppressed LPS-induced expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in BV-2 microglia cell line. Immunofluorescence and Western blotting analysis showed that ROF significantly inhibited the activation of microglia, as evidenced by decreased expression of ionized calcium binding adaptor molecule-1 (Iba1). Similar results were obtained in primary cultured microglial cells. ROF induced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of Sirtuin 1 (Sirt1). Interestingly, the AMPK inhibitor, compound C, blocked the role of ROF in both the phosphorylation of AMPK and the expression of Sirt1 in BV-2 cells stimulated with LPS. More importantly, the Sirt1 inhibitor, EX527, abolished the inhibitory role of ROF on the production of pro-inflammatory factors, and reactivated BV-2 cells. In mice challenged with LPS, ROF improved cognition and decreased the levels of IL-6 and TNF-α in both the cortex and hippocampus. In contrast, EX527 weakened the effects of ROF on cognitive enhancement and reduction of pro-inflammatory factors in the cortex and hippocampus. Furthermore, EX527 blocked the inhibitory role of ROF in the activation of microglial cells in both the hippocampus and cortex. Taken together, our results indicated that ROF attenuated LPS-induced neuroinflammatory responses in microglia, and the AMPK/Sirt1 pathway is essential for the anti-inflammatory effects of ROF.
Collapse
|
12
|
Al-Nema M, Gaurav A, Lee VS. Docking based screening and molecular dynamics simulations to identify potential selective PDE4B inhibitor. Heliyon 2020; 6:e04856. [PMID: 32984588 PMCID: PMC7498760 DOI: 10.1016/j.heliyon.2020.e04856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
Inhibition of phosphodiesterase 4 (PDE4) is a promising therapeutic approach for the treatment of inflammatory pulmonary disorders, i.e. asthma and chronic obstructive pulmonary disease. However, the treatment with non-selective PDE4 inhibitors is associated with side effects such as nausea and vomiting. Among the subtypes of PDE4 inhibited by these inhibitors, PDE4B is expressed in immune, inflammatory and airway smooth muscle cells, whereas, PDE4D is expressed in the area postrema and nucleus of the solitary tract. Thus, PDE4D inhibition is responsible for the emetic response. In this regard, a selective PDE4B inhibitor is expected to be a potential drug candidate for the treatment of inflammatory pulmonary disorders. Therefore, a shared feature pharmacophore model was developed and used as a query for the virtual screening of Maybridge and SPECS databases. A number of filters were applied to ensure only compounds with drug-like properties were selected. Accordingly, nine compounds have been identified as final hits, where HTS04529 showed the highest affinity and selectivity for PDE4B over PDE4D in molecular docking. The docked complexes of HTS04529 with PDE4B and PDE4D were subjected to molecular dynamics simulations for 100ns to assess their binding stability. The results showed that HTS04529 was bound tightly to PDE4B and formed a more stable complex with it than with PDE4D.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumber, 50603, Malaysia
| |
Collapse
|
13
|
Hunt DWC, Ivanova IA, Dagnino L. DRM02, a novel phosphodiesterase-4 inhibitor with cutaneous anti-inflammatory activity. Tissue Barriers 2020; 8:1765633. [PMID: 32479135 DOI: 10.1080/21688370.2020.1765633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic inflammatory skin disorders are frequently associated with impaired skin barrier function. Selective phosphodiesterase-4 (PDE4) inhibition constitutes an effective therapeutic strategy for the treatment of inflammatory skin diseases. We now report the pharmacological anti-inflammatory profile of DRM02, a novel pyrazolylbenzothiazole derivative with selective in vitro inhibitory activity toward PDE4 isoforms A, B and D. DRM02 treatment of cultured primary human and mouse epidermal keratinocytes interfered with pro-inflammatory cytokine production elicited by interleukin-1α and tumor necrosis factor-α. Similarly, DRM02 inhibited the production of pro-inflammatory cytokines by human peripheral blood mononuclear cells ex vivo and cultured THP-1 monocyte-like cells, with IC50 values of 0.6-14 µM. These anti-inflammatory properties of DRM02 were associated with dose-dependent repression of nuclear factor-κB (NF-κB) transcriptional activity. In skin inflammation in vivo mouse models, topically applied DRM02 inhibited the acute response to phorbol ester and induced Th2-type contact hypersensitivity reactivity. Further, DRM02 also decreased cutaneous clinical changes and expression of Th17 immune pathway cytokines in a mouse model of psoriasis evoked by repeated topical imiquimod application. Thus, the overall pharmacological profiling of the PDE4 inhibitor DRM02 has revealed its potential as a topical therapy for inflammatory skin disorders and restoration of skin homeostasis.
Collapse
Affiliation(s)
| | - Iordanka A Ivanova
- Department of Physiology and Pharmacology, University of Western Ontario , London, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, University of Western Ontario , London, Canada.,Department of Oncology, University of Western Ontario , London, Canada
| |
Collapse
|
14
|
Peng T, Qi B, He J, Ke H, Shi J. Advances in the Development of Phosphodiesterase-4 Inhibitors. J Med Chem 2020; 63:10594-10617. [PMID: 32255344 DOI: 10.1021/acs.jmedchem.9b02170] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclic nucleotide phosphodiesterase 4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP) and plays vital roles in biological processes such as cancer development. To date, PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases such as chronic obstructive pulmonary disease, and many of them have progressed to clinical trials or have been approved as drugs. Herein, we review the advances in the development of PDE4 inhibitors in the past decade and will focus on their pharmacophores, PDE4 subfamily selectivity, and therapeutic potential. Hopefully, this analysis will lead to a strategy for development of novel therapeutics targeting PDE4.
Collapse
Affiliation(s)
- Ting Peng
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun He
- Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
15
|
Lourenço EMG, Fernandes JM, Carvalho VDF, Grougnet R, Martins MA, Jordão AK, Zucolotto SM, Barbosa EG. Identification of a Selective PDE4B Inhibitor From Bryophyllum pinnatum by Target Fishing Study and In Vitro Evaluation of Quercetin 3- O-α-L-Arabinopyranosyl-(1→2)- O-α-L-Rhamnopyranoside. Front Pharmacol 2020; 10:1582. [PMID: 32038254 PMCID: PMC6987432 DOI: 10.3389/fphar.2019.01582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Natural products are considered an important source of bioactive compounds especially in biodiversity-rich countries like Brazil. The identification of potential targets is crucial to the development of drugs from natural sources. In this context, in silico methodologies, such as inverse virtual screening (target fishing), are interesting tools as they are a rational and direct method that reduces costs and experimental time. Among the species of Brazilian biomes, Bryophyllum pinnatum (Lam.) Oken, native to Madagascar, is widely used by the population to treat inflammation conditions. It has a remarkable presence of flavonoids, including quercetin 3-O-α-L-arabinopyranosyl-(1→2)-O-α-L-rhamnopyranoside (1), considered one of its major compounds. However, until now there were no studies addressing its putative mechanism of action and explaining its pharmacological action. The enzyme PDE4B, known as an antiinflammatory protein, was indicated as a promising target by target fishing methods. This activity was confirmed by in vitro enzymatic inhibition, and an expressive selectivity of PDE4B over PDE4A was demonstrated. The interactions were investigated through molecular dynamics simulations. The results were pioneering, representing an advance in the investigation of the antiinflammatory action of B. pinnatum and confirm the potential of the flavonoid as a chemical extract marker. Also, the flavonoid was shown to be a promising lead for the design of other selective PDE4B blockers to treat inflammatory diseases.
Collapse
Affiliation(s)
- Estela M G Lourenço
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Júlia M Fernandes
- Laboratório de Produtos Naturais Bioativos, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Raphael Grougnet
- Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Marco A Martins
- Laboratório de Inflamação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Alessandro K Jordão
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Silvana M Zucolotto
- Laboratório de Produtos Naturais Bioativos, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Euzébio G Barbosa
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|