1
|
Hayasaka M, Hamajima L, Yoshida Y, Mori R, Kato H, Suzuki H, Tsurigami R, Kojima T, Kato M, Shimizu M. Phenanthrene degradation by a flavoprotein monooxygenase from Phanerodontia chrysosporium. Appl Environ Microbiol 2025; 91:e0157424. [PMID: 39898659 PMCID: PMC11921375 DOI: 10.1128/aem.01574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Phenanthrene (PHEN), a polycyclic aromatic hydrocarbon (PAH), is degraded by white-rot fungi like Phanerochaete chrysosporium (the fungus has been renamed as Phanerodontia chrysosporium). PHEN is metabolized by P. chrysosporium and transformed into various monohydroxylated and dihydroxylated products. These intermediates are further degraded by cleavage of the aromatic ring. However, the enzymes involved in PHEN conversion in P. chrysosporium remain largely unidentified. We aimed to identify and characterize the P. chrysosporium enzymes involved in the degradation of PHEN and its intermediates. Recombinant P. chrysosporium flavoprotein monooxygenase 11 (FPMO11), a homolog of the salicylate 1-monooxygenase from the naphthalene-degrading bacterium Pseudomonas putida G7, was overexpressed in Escherichia coli. FPMO11 catalyzes the oxidative decarboxylation of 1-hydroxy-2-naphthoate (1H2N) and 2-hydroxy-1-naphthoate (2H1N) to 1,2-dihydroxynaphthalene (1,2DHN). To the best of our knowledge, this is the first study to identify and characterize enzymes with 1H2N and 2H1N monooxygenase activities in members of the FPMO superfamily. Additionally, our search for a dioxygenase with the ability to catalyze the aromatic ring cleavage of 1,2DHN led to the identification of intradiol dioxygenase (IDD) 1 and IDD2 from P. chrysosporium, which catalyzes the ring cleavage of 1,2DHN. Thus, this study also identified, for the first time, intradiol 1,2DHN dioxygenase activity in members of the IDD superfamily. The findings highlight the unique substrate spectra of FPMO11 and IDDs, rendering them attractive candidates for biotechnological applications, especially mitigation of environmental and health risks associated with PAH pollution.IMPORTANCEPhenanthrene (PHEN), a polycyclic aromatic hydrocarbon (PAH), is a widely studied pollutant in environmental science and toxicology due to its presence in fossil fuels, tobacco smoke, and as a byproduct of incomplete combustion processes. White-rot fungi like P. chrysosporium can degrade PHEN through the production of extracellular oxidative enzymes. We investigated the properties of PHEN-degrading enzymes in P. chrysosporium, specifically one flavoprotein monooxygenase (FPMO11) and two intradiol dioxygenases (IDD1 and IDD2). Our findings indicate that the enzymes catalyze the aromatic ring cleavage of PHEN, using the intermediates as substrates, transforming them into less harmful and more biodegradable compounds. This could help reduce environmental pollution and mitigate health risks associated with PAH exposure. The potential of these enzymes for biotechnological applications is also highlighted, emphasizing their critical role in understanding PAH degradation by white-rot fungi.
Collapse
Affiliation(s)
- Mika Hayasaka
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Link Hamajima
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Yuki Yoshida
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Reini Mori
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | | | | | | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | |
Collapse
|
2
|
Kuatsjah E, Schwartz A, Zahn M, Tornesakis K, Kellermyer ZA, Ingraham MA, Woodworth SP, Ramirez KJ, Cox PA, Pickford AR, Salvachúa D. Biochemical and structural characterization of enzymes in the 4-hydroxybenzoate catabolic pathway of lignin-degrading white-rot fungi. Cell Rep 2024; 43:115002. [PMID: 39589922 DOI: 10.1016/j.celrep.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species. Here, we characterize seven enzymes from two WRF, Trametes versicolor and Gelatoporia subvermispora, which constitute a four-enzyme cascade from 4-hydroxybenzoate to β-ketoadipate via the hydroxyquinol pathway. Furthermore, we solve the crystal structure of four of these enzymes and identify mechanistic differences with the closest bacterial and fungal structural homologs. Overall, this research expands our understanding of aromatic catabolism by WRF and establishes an alternative strategy for the conversion of lignin-related compounds to the valuable molecule β-ketoadipate, contributing to the development of biological processes for lignin valorization.
Collapse
Affiliation(s)
- Eugene Kuatsjah
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Alexa Schwartz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA; Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Michael Zahn
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Konstantinos Tornesakis
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Paul A Cox
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
3
|
Richardson BC, Turlington ZR, Vaz Ferreira de Macedo S, Phillips SK, Perry K, Brancato SG, Cooke EW, Gwilt JR, Dasovich MA, Roering AJ, Rossi FM, Snider MJ, French JB, Hicks KA. Structural and Functional Characterization of a Novel Class A Flavin Monooxygenase from Bacillus niacini. Biochemistry 2024; 63:2506-2516. [PMID: 39265075 DOI: 10.1021/acs.biochem.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A gene cluster responsible for the degradation of nicotinic acid (NA) in Bacillus niacini has recently been identified, and the structures and functions of the resulting enzymes are currently being evaluated to establish pathway intermediates. One of the genes within this cluster encodes a flavin monooxygenase (BnFMO) that is hypothesized to catalyze a hydroxylation reaction. Kinetic analyses of the recombinantly purified BnFMO suggest that this enzyme catalyzes the hydroxylation of 2,6-dihydroxynicotinic acid (2,6-DHNA) or 2,6-dihydroxypyridine (2,6-DHP), which is formed spontaneously by the decarboxylation of 2,6-DHNA. To understand the details of this hydroxylation reaction, we determined the structure of BnFMO using a multimodel approach combining protein X-ray crystallography and cryo-electron microscopy (cryo-EM). A liganded BnFMO cryo-EM structure was obtained in the presence of 2,6-DHP, allowing us to make predictions about potential catalytic residues. The structural data demonstrate that BnFMO is trimeric, which is unusual for Class A flavin monooxygenases. In both the electron density and coulomb potential maps, a region at the trimeric interface was observed that was consistent with and modeled as lipid molecules. High-resolution mass spectral analysis suggests that there is a mixture of phosphatidylethanolamine and phosphatidylglycerol lipids present. Together, these data provide insights into the molecular details of the central hydroxylation reaction unique to the aerobic degradation of NA in Bacillus niacini.
Collapse
Affiliation(s)
- Brian C Richardson
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Zachary R Turlington
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | | | - Sara K Phillips
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Savannah G Brancato
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Emmalee W Cooke
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
- Department of Chemistry, the College of Wooster, Wooster, Ohio 44691, United States
| | - Jonathan R Gwilt
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Morgan A Dasovich
- Department of Chemistry, the College of Wooster, Wooster, Ohio 44691, United States
| | - Andrew J Roering
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Francis M Rossi
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Mark J Snider
- Department of Chemistry, the College of Wooster, Wooster, Ohio 44691, United States
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Katherine A Hicks
- Department of Chemistry, State University of New York at Cortland, Cortland, New York 13045, United States
| |
Collapse
|
4
|
Turlington ZR, Vaz Ferreira de Macedo S, Perry K, Belsky SL, Faust JA, Snider MJ, Hicks KA. Ligand bound structure of a 6-hydroxynicotinic acid 3-monooxygenase provides mechanistic insights. Arch Biochem Biophys 2024; 752:109859. [PMID: 38104959 PMCID: PMC11726978 DOI: 10.1016/j.abb.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
6-Hydroxynicotinic acid 3-monooxygenase (NicC) is a bacterial enzyme involved in the degradation of nicotinic acid. This enzyme is a Class A flavin-dependent monooxygenase that catalyzes a unique decarboxylative hydroxylation. The unliganded structure of this enzyme has previously been reported and studied using steady- and transient-state kinetics to support a comprehensive kinetic mechanism. Here we report the crystal structure of the H47Q NicC variant in both a ligand-bound (solved to 2.17 Å resolution) and unliganded (1.51 Å resolution) form. Interestingly, in the liganded form, H47Q NicC is bound to 2-mercaptopyridine (2-MP), a contaminant present in the commercial stock of 6-mercaptopyridine-3-carboxylic acid(6-MNA), a substrate analogue. 2-MP binds weakly to H47Q NicC and is not a substrate for the enzyme. Based on kinetic and thermodynamic characterization, we have fortuitously captured a catalytically inactive H47Q NicC•2-MP complex in our crystal structure. This complex reveals interesting mechanistic details about the reaction catalyzed by 6-hydroxynicotinic acid 3-monooxygenase.
Collapse
Affiliation(s)
- Zachary R Turlington
- Department of Chemistry, State University of New York at Cortland, Cortland, NY, 13045, United States
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, United States
| | - Sam L Belsky
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Jennifer A Faust
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Mark J Snider
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Katherine A Hicks
- Department of Chemistry, State University of New York at Cortland, Cortland, NY, 13045, United States.
| |
Collapse
|
5
|
Phillips SK, Brancato SG, MacMillan SN, Snider MJ, Roering AJ, Hicks KA. Synthesis and crystallographic characterization of 6-hydroxy-1,2-dihydropyridin-2-one. Acta Crystallogr E Crystallogr Commun 2023; 79:1147-1150. [PMID: 38313119 PMCID: PMC10833402 DOI: 10.1107/s205698902300974x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/07/2023] [Indexed: 02/06/2024]
Abstract
The title compound, C5H5NO2, is a hy-droxy-lated pyridine ring that has been studied for its involvement in microbial degradation of nicotinic acid. Here we describe its synthesis as a formic acid salt, rather than the standard hydro-chloride salt that is commercially available, and its spectroscopic and crystallographic characterization.
Collapse
Affiliation(s)
- Sara K. Phillips
- Department of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA
| | - Savannah G. Brancato
- Department of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Mark J. Snider
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, USA
| | - Andrew J. Roering
- Department of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA
| | - Katherine A. Hicks
- Department of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA
| |
Collapse
|
6
|
Perkins SW, Hlaing MZ, Hicks KA, Rajakovich LJ, Snider MJ. Mechanism of the Multistep Catalytic Cycle of 6-Hydroxynicotinate 3-Monooxygenase Revealed by Global Kinetic Analysis. Biochemistry 2023; 62:1553-1567. [PMID: 37130364 DOI: 10.1021/acs.biochem.2c00514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The class A flavoenzyme 6-hydroxynicotinate 3-monooxygenase (NicC) catalyzes a rare decarboxylative hydroxylation reaction in the degradation of nicotinate by aerobic bacteria. While the structure and critical residues involved in catalysis have been reported, the mechanism of this multistep enzyme has yet to be determined. A kinetic understanding of the NicC mechanism would enable comparison to other phenolic hydroxylases and illuminate its bioengineering potential for remediation of N-heterocyclic aromatic compounds. Toward these goals, transient state kinetic analyses by stopped-flow spectrophotometry were utilized to follow rapid changes in flavoenzyme absorbance spectra during all three stages of NicC catalysis: (1) 6-HNA binding; (2) NADH binding and FAD reduction; and (3) O2 binding with C4a-adduct formation, substrate hydroxylation, and FAD regeneration. Global kinetic simulations by numeric integration were used to supplement analytical fitting of time-resolved data and establish a kinetic mechanism. Results indicate that 6-HNA binding is a two-step process that substantially increases the affinity of NicC for NADH and enables the formation of a charge-transfer-complex intermediate to enhance the rate of flavin reduction. Singular value decomposition of the time-resolved spectra during the reaction of the substrate-bound, reduced enzyme with dioxygen provides evidence for the involvement of C4a-hydroperoxy-flavin and C4a-hydroxy-flavin intermediates in NicC catalysis. Global analysis of the full kinetic mechanism suggests that steady-state catalytic turnover is partially limited by substrate hydroxylation and C4a-hydroxy-flavin dehydration to regenerate the flavoenzyme. Insights gleaned from the kinetic model and determined microscopic rate constants provide a fundamental basis for understanding NicC's substrate specificity and reactivity.
Collapse
Affiliation(s)
- Scott W Perkins
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - May Z Hlaing
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Katherine A Hicks
- Department of Chemistry, The State University of New York College at Cortland, Cortland, New York 13045, United States
| | - Lauren J Rajakovich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark J Snider
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
7
|
Westphal AH, Tischler D, van Berkel WJH. Natural diversity of FAD-dependent 4-hydroxybenzoate hydroxylases. Arch Biochem Biophys 2021; 702:108820. [PMID: 33684360 DOI: 10.1016/j.abb.2021.108820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/05/2023]
Abstract
4-Hydroxybenzoate 3-hydroxylase (PHBH) is the most extensively studied group A flavoprotein monooxygenase (FPMO). PHBH is almost exclusively found in prokaryotes, where its induction, usually as a consequence of lignin degradation, results in the regioselective formation of protocatechuate, one of the central intermediates in the global carbon cycle. In this contribution we introduce several less known FAD-dependent 4-hydroxybenzoate hydroxylases. Phylogenetic analysis showed that the enzymes discussed here reside in distinct clades of the group A FPMO family, indicating their separate divergence from a common ancestor. Protein homology modelling revealed that the fungal 4-hydroxybenzoate 3-hydroxylase PhhA is structurally related to phenol hydroxylase (PHHY) and 3-hydroxybenzoate 4-hydroxylase (3HB4H). 4-Hydroxybenzoate 1-hydroxylase (4HB1H) from yeast catalyzes an oxidative decarboxylation reaction and is structurally similar to 3-hydroxybenzoate 6-hydroxylase (3HB6H), salicylate hydroxylase (SALH) and 6-hydroxynicotinate 3-monooxygenase (6HNMO). Genome mining suggests that the 4HB1H activity is widespread in the fungal kingdom and might be responsible for the oxidative decarboxylation of vanillate, an import intermediate in lignin degradation. 4-Hydroxybenzoyl-CoA 1-hydroxylase (PhgA) catalyzes an intramolecular migration reaction (NIH shift) during the three-step conversion of 4-hydroxybenzoate to gentisate in certain Bacillus species. PhgA is phylogenetically related to 4-hydroxyphenylacetate 1-hydroxylase (4HPA1H). In summary, this paper shines light on the natural diversity of group A FPMOs that are involved in the aerobic microbial catabolism of 4-hydroxybenzoate.
Collapse
Affiliation(s)
- Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands.
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Germany.
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|