1
|
Veretenenko II, Trofimov YA, Krylov NA, Efremov RG. Nanoscale lipid domains determine the dynamic molecular portraits of mixed DOPC/DOPS bilayers in a fluid phase: A computational insight. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184376. [PMID: 39111381 DOI: 10.1016/j.bbamem.2024.184376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Lateral heterogeneity, or mosaicity, is a fundamental property inherent to cell membranes that is crucial for their functioning. While microscopic inhomogeneities (e.g. rafts) are easily detected experimentally, lipid domains with nanoscale dimensions (nanoclusters of nanodomains, NDs) resist reliable characterization by instrumental methods. In such a case, important insight can be gained via computer modeling. Here, NDs composed of lipid's head groups in the mixed zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylserine (DOPS) bilayers were studied by molecular dynamics. A new algorithm has been developed to identify NDs. Unlike most similar methods, it implicitly considers the heterogeneous distribution of lipid head atomic density and does not require subjectively chosen parameters. In DOPS-rich membranes, lipids form more compact and stable NDs due to strong interlipid interactions. In DOPC-rich systems, NDs arise due to the "packing" effect of weakly bound lipid heads. The clustering picture is related to the physical properties of the bilayer surface: DOPS-rich systems show more pronounced surface heterogeneity of hydrophilic/hydrophobic regions compared to DOPC-rich ones. The results obtained are important for the effective quantitative characterization of the "dynamic molecular portrait" of a membrane surface - its "fingerprint" characterizing dynamical distribution of its physicochemical properties.
Collapse
Affiliation(s)
- Irina I Veretenenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia.
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia; National Research University Higher School of Economics, Moscow 101000, Russia.
| |
Collapse
|
2
|
Cheng KJ, De Lio AM, Jain R, Paul D, Morrissey JH, Pogorelov TV. Lactadherin's Multistate Binding Predicts Stable Membrane-Bound Conformations of Factors V and VIII's C Domains. Biochemistry 2023; 62:3020-3032. [PMID: 37747791 PMCID: PMC10903746 DOI: 10.1021/acs.biochem.3c00274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Protein binding to negatively charged lipids is essential for maintaining numerous vital cellular processes where its dysfunction can lead to various diseases. One such protein that plays a crucial role in this process is lactadherin, which competes with coagulation factors for membrane binding sites to regulate blood clotting. Despite identifying key binding regions of these proteins through structural and biochemical studies, models incorporating membrane dynamics are still lacking. In this study, we report on the multimodal binding of lactadherin and use it to gain insight into the binding mechanisms of its C domain homologs, factor V and factor VIII. Molecular dynamics simulations enhanced with the highly mobile mimetic model enabled the determination of lactadherin's multimodal binding on membranes that revealed critical interacting residues consistent with prior NMR and mutagenesis data. The binding occurred primarily via two dynamic structural ensembles: an inserted state and an unreported, highly conserved side-lying state driven by a cationic patch. We utilized these findings to analyze the membrane binding domains of coagulation factors V and VIII and identified their preferred membrane-bound conformations. Specifically, factor V's C domains maintained an inserted state, while factor VIII preferred a tilted, side-lying state that permitted antibody binding. Insight into lactadherin's atomistically resolved membrane interactions from a multistate perspective can guide new therapeutic opportunities in treating diseases related to blood coagulation.
Collapse
Affiliation(s)
- Kevin J Cheng
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ashley M De Lio
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputer Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Riya Jain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Divyani Paul
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Taras V Pogorelov
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Della Ripa LA, Courtney JM, Phinney SM, Borcik CG, Burke MD, Rienstra CM, Pogorelov TV. Segmental Dynamics of Membranous Cholesterol are Coupled. J Am Chem Soc 2023; 145:15043-15048. [PMID: 37410392 PMCID: PMC10638920 DOI: 10.1021/jacs.3c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Cholesterol promotes the structural integrity of the fluid cell membrane and interacts dynamically with many membrane proteins to regulate function. Understanding site-resolved cholesterol structural dynamics is thus important. This long-standing challenge has thus far been addressed, in part, by selective isotopic labeling approaches. Here we present a new 3D solid-state NMR (SSNMR) experiment utilizing scalar 13C-13C polarization transfer and recoupling of the 1H-13C interactions in order to determine average dipolar couplings for all 1H-13C vectors in uniformly 13C-enriched cholesterol. The experimentally determined order parameters (OP) agree exceptionally well with molecular dynamics (MD) trajectories and reveal coupling among several conformational degrees of freedom in cholesterol molecules. Quantum chemistry shielding calculations further support this conclusion and specifically demonstrate that ring tilt and rotation are coupled to changes in tail conformation and that these coupled segmental dynamics dictate the orientation of cholesterol. These findings advance our understanding of physiologically relevant dynamics of cholesterol, and the methods that revealed them have broader potential to characterize how structural dynamics of other small molecules impact their biological functions.
Collapse
|
4
|
Antila HS, Kav B, Miettinen MS, Martinez-Seara H, Jungwirth P, Ollila OHS. Emerging Era of Biomolecular Membrane Simulations: Automated Physically-Justified Force Field Development and Quality-Evaluated Databanks. J Phys Chem B 2022. [DOI: 10.1021/acs.jpcb.2c01954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanne S. Antila
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Batuhan Kav
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum
Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Markus S. Miettinen
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - O. H. Samuli Ollila
- Institute of Biotechonology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
5
|
Kahana A, Maslov S, Lancet D. Dynamic lipid aptamers: non-polymeric chemical path to early life. Chem Soc Rev 2021; 50:11741-11746. [PMID: 34541591 DOI: 10.1039/d1cs00633a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A widespread dogma asserts that life could not have emerged without biopolymers - RNA and proteins. However, the widely acknowledged implausibility of a spontaneous appearance and proliferation of these complex molecules in primordial messy chemistry casts doubt on this scenario. A proposed alternative is "Lipid-First", based on the evidence that lipid assemblies may spontaneously emerge in heterogeneous environments, and are shown to undergo growth and fission, and to portray autocatalytic self-copying. What seems undecided is whether lipid assemblies have protein-like capacities for stereospecific interactions, a sine qua non of life processes. This Viewpoint aims to alleviate such doubts, pointing to growing experimental evidence that lipid aggregates possess dynamic surface configurations capable of stereospecific molecular recognition. Such findings help support a possible key role of lipids in seeding life's origin.
Collapse
Affiliation(s)
- Amit Kahana
- Dept. of Molecular Genetics, the Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Svetlana Maslov
- Dept. of Molecular Genetics, the Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Doron Lancet
- Dept. of Molecular Genetics, the Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
6
|
Allolio C, Harries D. Calcium Ions Promote Membrane Fusion by Forming Negative-Curvature Inducing Clusters on Specific Anionic Lipids. ACS NANO 2021; 15:12880-12887. [PMID: 34338519 DOI: 10.1021/acsnano.0c08614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vesicles enriched in certain negatively charged lipids, such as phosphatidylserine and PIP2, are known to undergo fusion in the presence of calcium ions without assistance from protein assemblies. Other lipids do not exhibit this propensity, even if they are negatively charged. Using our recently developed methodology, we extract elastic properties of a representative set of lipids. This allows us to trace the origin of lipid-calcium selectivity in membrane fusion to the formation of lipid clusters with long-range correlations that induce negative curvature on the membrane surface. Furthermore, the clusters generate lateral tension in the headgroup region at the membrane surface, concomitantly also stabilizing negative Gaussian curvature. Finally, calcium binding also reduces the orientational polarization of water around the membrane head groups, potentially reducing the hydration force acting between membranes. Binding calcium only weakly increases membrane bending rigidity and tilt moduli, in agreement with experiments. We show how the combined effects of calcium binding to membranes lower the barriers along the fusion pathway that lead to the formation of the fusion stalk as well as the fusion pore.
Collapse
Affiliation(s)
- Christoph Allolio
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83, 186 75 Prague 8, Czech Republic
- Institute of Chemistry, The Fritz Haber Center, and The Center for Nanoscience and Nanotechnology, The Hebrew University, E.J. Safra Campus, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Fritz Haber Center, and The Center for Nanoscience and Nanotechnology, The Hebrew University, E.J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Baryiames CP, Ma E, Baiz CR. Ions Slow Water Dynamics at Nonionic Surfactant Interfaces. J Phys Chem B 2020; 124:11895-11900. [DOI: 10.1021/acs.jpcb.0c09086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher P. Baryiames
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Emily Ma
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
8
|
Ozturk TN, Culham DE, Tempelhagen L, Wood JM, Lamoureux G. Salt-Dependent Interactions between the C-Terminal Domain of Osmoregulatory Transporter ProP of Escherichia coli and the Lipid Membrane. J Phys Chem B 2020; 124:8209-8220. [PMID: 32838524 DOI: 10.1021/acs.jpcb.0c03935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osmosensing transporter ProP detects the increase in cytoplasmic cation concentration associated with osmotically induced cell dehydration and mediates osmolyte uptake into bacteria. ProP is a 12-transmembrane helix protein with an α-helical, cytoplasmic C-terminal domain (CTD) linked to transmembrane helix XII (TM XII). It has been proposed that the CTD helix associates with the anionic membrane surface to lock ProP in an inactive conformation and that the release of the CTD may activate ProP. To investigate this possible activation mechanism, we have built and simulated a structural model in which the CTD was anchored to the membrane by TM XII and the CTD helix was associated with the membrane surface. Molecular dynamics simulations showed specific intrapeptide salt bridges forming when the CTD associated with the membrane. Experiments supported the presence of the salt bridge Lys447-Asp455 and suggested a role for these residues in osmosensing. Simulations performed at different salt concentrations showed weakened CTD-lipid interactions at 0.25 M KCl and gradual stiffening of the membrane with increasing salinity. These results suggest that salt cations may affect CTD release and activate ProP by increasing the order of membrane phospholipids.
Collapse
Affiliation(s)
- Tugba N Ozturk
- Department of Physics, Concordia University, Montreal QC H4B 1R6, Canada.,Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Laura Tempelhagen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Guillaume Lamoureux
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec H4B 1R6, Canada.,Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, United States
| |
Collapse
|
9
|
Sahoo A, Matysiak S. Microscopic Picture of Calcium-Assisted Lipid Demixing and Membrane Remodeling Using Multiscale Simulations. J Phys Chem B 2020; 124:7327-7335. [PMID: 32786720 DOI: 10.1021/acs.jpcb.0c03067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The specificity of anionic phospholipids-calcium ion interaction and lipid demixing has been established as a key regulatory mechanism in several cellular signaling processes. The mechanism and implications of this calcium-assisted demixing have not been elucidated from a microscopic point of view. Here, we present an overview of atomic interactions between calcium and phospholipids that can drive nonideal mixing of lipid molecules in a model lipid bilayer composed of zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) and anionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) lipids with computer simulations at multiple resolutions. Lipid nanodomain formation and growth were driven by calcium-enabled lipid bridging of the charged phosphatidylserine (PS) headgroups, which were favored against inter-POPS dipole interactions. Consistent with several experimental studies of calcium-associated membrane sculpting, our analyses also suggest modifications in local membrane curvature and cross-leaflet couplings as a response to such induced lateral heterogeneity. In addition, reverse mapping to a complementary atomistic description revealed structural insights in the presence of anionic nanodomains, at timescales not accessed by previous computational studies. This work bridges information across multiple scales to reveal a mechanistic picture of calcium ion's impact on membrane biophysics.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Valentine ML, Cardenas AE, Elber R, Baiz CR. Calcium-Lipid Interactions Observed with Isotope-Edited Infrared Spectroscopy. Biophys J 2020; 118:2694-2702. [PMID: 32362342 DOI: 10.1016/j.bpj.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 01/17/2023] Open
Abstract
Calcium ions bind to lipid membranes containing anionic lipids; however, characterizing the specific ion-lipid interactions in multicomponent membranes has remained challenging because it requires nonperturbative lipid-specific probes. Here, using a combination of isotope-edited infrared spectroscopy and molecular dynamics simulations, we characterize the effects of a physiologically relevant (2 mM) Ca2+ concentration on zwitterionic phosphatidylcholine and anionic phosphatidylserine lipids in mixed lipid membranes. We show that Ca2+ alters hydrogen bonding between water and lipid headgroups by forming a coordination complex involving the lipid headgroups and water. These interactions distort interfacial water orientations and prevent hydrogen bonding with lipid ester carbonyls. We demonstrate, experimentally, that these effects are more pronounced for the anionic phosphatidylserine lipids than for zwitterionic phosphatidylcholine lipids in the same membrane.
Collapse
Affiliation(s)
- Mason L Valentine
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - Alfredo E Cardenas
- Department of Chemistry, University of Texas at Austin, Austin, Texas; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, Texas; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
11
|
Melcr J, Ferreira TM, Jungwirth P, Ollila OHS. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J Chem Theory Comput 2019; 16:738-748. [PMID: 31762275 DOI: 10.1021/acs.jctc.9b00824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylserine (PS) lipids are important signaling molecules and the most common negatively charged lipids in eukaryotic membranes. The signaling can be often regulated by calcium, but its interactions with PS headgroups are not fully understood. Classical molecular dynamics (MD) simulations can potentially give detailed description of lipid-ion interactions, but the results strongly depend on the used force field. Here, we apply the electronic continuum correction (ECC) to the Amber Lipid17 parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipid to improve its interactions with K+, Na+, and Ca2+ ions. The partial charges of the headgroup, glycerol backbone, and carbonyls of POPS, bearing a unit negative charge, were scaled with a factor of 0.75, derived for monovalent ions, and the Lennard-Jones σ parameters of the same segments were scaled with a factor of 0.89. The resulting ECC-POPS model gives more realistic interactions with Na+ and Ca2+ cations than the original Amber Lipid17 parameters when validated using headgroup order parameters and the "electrometer concept". In ECC-lipids simulations, populations of complexes of Ca2+ cations with more than two PS lipids are negligible, and interactions of Ca2+ cations with only carboxylate groups are twice more likely than with only phosphate groups, while interactions with carbonyls almost entirely involve other groups as well. Our results pave the way for more realistic MD simulations of biomolecular systems with anionic membranes, allowing signaling processes involving PS and Ca2+ to be elucidated.
Collapse
Affiliation(s)
- Josef Melcr
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic.,Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials , University of Groningen , 9747 AG Groningen , The Netherlands
| | - Tiago M Ferreira
- NMR Group-Institut for Physics , Martin-Luther University Halle-Wittenberg , 06120 Halle , Germany
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic
| | - O H Samuli Ollila
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic.,Institute of Biotechnology , University of Helsinki , Helsinki FI-00014 , Finland
| |
Collapse
|
12
|
Wang G, Tang J, Song Q, Yu Q, Yao C, Li P, Ding Y, Lin M, Cheng D. Malus micromalus Makino phenolic extract preserves hepatorenal function by regulating PKC-α signaling pathway and attenuating endoplasmic reticulum stress in lead (II) exposure mice. J Inorg Biochem 2019; 203:110925. [PMID: 31760233 DOI: 10.1016/j.jinorgbio.2019.110925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022]
Abstract
Lead (Pb), which widely recognized as a nonessential heavy metal and a major environmental contamination, is a growing threat to the ecosystem and human body. In the present study, Malus micromalus Makino cv. 'Dong Hong' phenolic extract (MMPE) has been used to antagonise Pb-induced erythrocyte injury, hepatic and renal dysfunction in mice. Six-week-old male Kunming mice were gavaged with PbCl2 (20 mg/kg mouse/day) and/or MMPE (100 mg/kg mouse/day) by gavage administration for 10 days. We evaluated erythrocyte fragility, relative organ mass, biochemical parameters and histopathological changes to evaluate the protection effect of MMPE on the injury of liver and kidney in Pb-treated mice. MMPE significantly inhibited the increase of protein kinase C-α, B-cell lymphoma-2-associated X, cytochrome C and Caspase-3 protein levels and decreased calreticulin protein expression level in Pb-exposed mice. MMPE supplementation could maintain the integrity of erythrocyte membranes and ameliorate the endoplasmic reticulum stress in Pb-treated mice. It suggested MMPE as a natural nutritional supplement to alleviate Pb-induced hazardous effects in Pb-exposed humans.
Collapse
Affiliation(s)
- Guangliang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Jinlei Tang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Qi Song
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Qianqian Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Congying Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Pengfei Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Mibin Lin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology,Tianjin, 300457,China; Demonstration center of food quality and safety testing technology, Tianjin University of Science and Technology, 300457, Tianjin, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Antila H, Buslaev P, Favela-Rosales F, Ferreira TM, Gushchin I, Javanainen M, Kav B, Madsen JJ, Melcr J, Miettinen MS, Määttä J, Nencini R, Ollila OHS, Piggot TJ. Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. J Phys Chem B 2019; 123:9066-9079. [DOI: 10.1021/acs.jpcb.9b06091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanne Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Pavel Buslaev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Fernando Favela-Rosales
- Departamento de Investigación, Tecnológico Nacional de México, Campus Zacatecas Occidente, C. P. 99102 Zacatecas, México
| | - Tiago M. Ferreira
- NMR Group - Institute for Physics, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Batuhan Kav
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jesper J. Madsen
- Department of Chemistry, The University of Chicago, 60637 Chicago, Illinois, United States of America
- Department of Global Health, College of Public Health, University of South Florida, 33612 Tampa, Florida, United States of America
| | - Josef Melcr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Markus S. Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jukka Määttä
- Department of Chemistry and Materials Science, Aalto University, 00076 Espoo, Finland
| | - Ricky Nencini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - O. H. Samuli Ollila
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas J. Piggot
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|