Larocca M, Floresta G, Verderese D, Cilibrizzi A. Dominant Chemical Interactions Governing the Folding Mechanism of Oligopeptides.
Int J Mol Sci 2024;
25:9586. [PMID:
39273531 PMCID:
PMC11395422 DOI:
10.3390/ijms25179586]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The hydrophobic effect is the main factor that drives the folding of polypeptide chains. In this study, we have examined the influence of the hydrophobic effect in the context of the main mechanical forces approach, mainly in relation to the establishment of specific interplays, such as hydrophobic and CH-π cloud interactions. By adopting three oligopeptides as model systems to assess folding features, we demonstrate herein that these finely tuned interactions dominate over electrostatic interactions, including H-bonds and electrostatic attractions/repulsions. The folding mechanism analysed here demonstrates cooperation at the single-residue level, for which we propose the terminology of "single residues cooperative folding". Overall, hydrophobic and CH-π cloud interactions produce the main output of the hydrophobic effect and govern the folding mechanism, as demonstrated in this study with small polypeptide chains, which in turn represent the main secondary structures in proteins.
Collapse