1
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of Chalkophomycin Biosynthesis Reveals N-Hydroxypyrrole-Forming Enzymes. J Am Chem Soc 2024; 146:16268-16280. [PMID: 38810110 PMCID: PMC11177257 DOI: 10.1021/jacs.4c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologues of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in the assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Anika K. Chand
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Zheng Cui
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of chalkophomycin biosynthesis reveals N-hydroxypyrrole-forming enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577118. [PMID: 38328124 PMCID: PMC10849742 DOI: 10.1101/2024.01.24.577118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating an interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologs of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anika K. Chand
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zheng Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Cheng Y, Yi X, Zhang Y, He Q, Chen D, Cao W, Fang P, Liu W. Oxidase Heterotetramer Completes 1-Azabicyclo[3.1.0]hexane Formation with the Association of a Nonribosomal Peptide Synthetase. J Am Chem Soc 2023; 145:8896-8907. [PMID: 37043819 DOI: 10.1021/jacs.2c12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Ficellomycin, azinomycins, and vazabitide A are nonribosomal peptide natural products characterized by an amino acid unit that contains a similar 1-azabicyclo[3.1.0]hexane (ABCH) pharmacophore. This unit is derived from diamino-dihydroxy-heptanic acid (DADH); however, the process through which linear DADH is cyclized to furnish an ABCH ring system remains poorly understood. Based on the reconstitution of the route of the ABCH-containing unit by blending genes/enzymes involved in the biosynthesis of ficellomycin and azinomycins, we report that ABCH formation is completed by an oxidase heterotetramer with the association of a nonribosomal peptide synthetase (NRPS). The DADH precursor was prepared in Escherichia coli to produce a conjugate subjected to in vitro enzymatic hydrolysis for offloading from an amino-group carrier protein. To furnish an aziridine ring, DADH was processed by C7-hydroxyl sulfonation and sulfate elimination-coupled cyclization. Further cyclization leading to an azabicyclic hexane pharmacophore was proved to occur in the NRPS, where the oxidase heterotetramer functions in trans and catalyzes α,β-dehydrogenation to initiate the formation of a fused five-membered nitrogen heterocycle. The identity of ABCH was validated by utilization of the resultant ABCH-containing unit in the total biosynthesis of ficellomycin. Biochemical characterization, crystal structure, and site-specific mutagenesis rationalize the catalytic mechanism of the unusual oxidase heterotetramer.
Collapse
Affiliation(s)
- Yiyuan Cheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuan Yi
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qingli He
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Weiguo Cao
- Department of Chemistry, Shanghai University, 99 Shangda Rd, Baoshan, Shanghai 200444, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Zhang L, Esquembre LA, Xia SN, Oesterhelt F, Hughes CC, Brötz-Oesterhelt H, Teufel R. Antibacterial Synnepyrroles from Human-Associated Nocardiopsis sp. Show Protonophore Activity and Disrupt the Bacterial Cytoplasmic Membrane. ACS Chem Biol 2022; 17:2836-2848. [PMID: 36179367 DOI: 10.1021/acschembio.2c00460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Actinobacteria have traditionally been an important source of bioactive natural products, although many genera remain poorly explored. Here, we report a group of distinctive pyrrole-containing natural products, named synnepyrroles, from Nocardiopsis synnemataformans. Detailed structural characterization by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy combined with isotope-labeling experiments revealed their molecular structures and biosynthetic precursors acetate, propionate, aspartate, and (for branched analogues) valine. The biosynthetic data points toward an unusual pathway for pyrrole formation via condensation of aspartate with diverse fatty acids that give rise to a unique pyrrole-3,4-dicarboxylate core and variable linear or terminally branched alkyl side chains. In addition, the bioactivity and mode of action of synnepyrrole A were characterized in Bacillus subtilis. Orienting assessment of the phenotype of synnepyrrole A-treated bacteria by high-resolution microscopy suggested the cytoplasmic membrane as the target structure. Further characterization of the membrane effects demonstrated dissipation of the membrane potential and intracellular acidification indicative of protonophore activity. At slightly higher concentrations, synnepyrrole A compromised the barrier function of the cytoplasmic membrane, allowing the passage of otherwise membrane-impermeable dye molecules.
Collapse
Affiliation(s)
- Lei Zhang
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Lidia Alejo Esquembre
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Shu-Ning Xia
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Filipp Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Chambers C Hughes
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Corpuz JC, Sanlley JO, Burkart MD. Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synth Syst Biotechnol 2022; 7:677-688. [PMID: 35224236 PMCID: PMC8857579 DOI: 10.1016/j.synbio.2022.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products. With catalysis mediated by specific protein-protein interactions formed between the peptidyl carrier protein (PCP) and its partner enzymes, NRPS enzymology and control remains fertile ground for discovery. This review focuses on the recent efforts within structural biology by compiling high-resolution structural data that shed light into the various protein-protein interfaces formed between the PCP and its partner enzymes, including the phosphopantetheinyl transferase (PPTase), adenylation (A) domain, condensation (C) domain, thioesterase (TE) domain and other tailoring enzymes within the synthetase. Integrating our understanding of how the PCP recognizes partner proteins with the potential to use directed evolution and combinatorial biosynthetic methods will enhance future efforts in discovery and production of new bioactive compounds.
Collapse
Affiliation(s)
- Joshua C. Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Javier O. Sanlley
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
6
|
Fortinez CM, Bloudoff K, Harrigan C, Sharon I, Strauss M, Schmeing TM. Structures and function of a tailoring oxidase in complex with a nonribosomal peptide synthetase module. Nat Commun 2022; 13:548. [PMID: 35087027 PMCID: PMC8795117 DOI: 10.1038/s41467-022-28221-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are large modular enzymes that synthesize secondary metabolites and natural product therapeutics. Most NRPS biosynthetic pathways include an NRPS and additional proteins that introduce chemical modifications before, during or after assembly-line synthesis. The bacillamide biosynthetic pathway is a common, three-protein system, with a decarboxylase that prepares an NRPS substrate, an NRPS, and an oxidase. Here, the pathway is reconstituted in vitro. The oxidase is shown to perform dehydrogenation of the thiazoline in the peptide intermediate while it is covalently attached to the NRPS, as the penultimate step in bacillamide D synthesis. Structural analysis of the oxidase reveals a dimeric, two-lobed architecture with a remnant RiPP recognition element and a dramatic wrapping loop. The oxidase forms a stable complex with the NRPS and dimerizes it. We visualized co-complexes of the oxidase bound to the elongation module of the NRPS using X-ray crystallography and cryo-EM. The three active sites (for adenylation, condensation/cyclization, and oxidation) form an elegant arc to facilitate substrate delivery. The structures enabled a proof-of-principle bioengineering experiment in which the BmdC oxidase domain is embedded into the NRPS.
Collapse
Affiliation(s)
- Camille Marie Fortinez
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Kristjan Bloudoff
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Connor Harrigan
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Itai Sharon
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Mike Strauss
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada.
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada.
| |
Collapse
|
7
|
Acharya A, Yi D, Pavlova A, Agarwal V, Gumbart JC. Resolving the Hydride Transfer Pathway in Oxidative Conversion of Proline to Pyrrole. Biochemistry 2022; 61:206-215. [DOI: 10.1021/acs.biochem.1c00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Qin Z, Yu S, Chen J, Zhou J. Dehydrogenases of acetic acid bacteria. Biotechnol Adv 2021; 54:107863. [PMID: 34793881 DOI: 10.1016/j.biotechadv.2021.107863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Acetic acid bacteria (AAB) are a group of bacteria that can oxidize many substrates such as alcohols and sugar alcohols and play important roles in industrial biotechnology. A majority of industrial processes that involve AAB are related to their dehydrogenases, including PQQ/FAD-dependent membrane-bound dehydrogenases and NAD(P)+-dependent cytoplasmic dehydrogenases. These cofactor-dependent dehydrogenases must effectively regenerate their cofactors in order to function continuously. For PQQ, FAD and NAD(P)+ alike, regeneration is directly or indirectly related to the electron transport chain (ETC) of AAB, which plays an important role in energy generation for aerobic cell growth. Furthermore, in changeable natural habitats, ETC components of AAB can be regulated so that the bacteria survive in different environments. Herein, the progressive cascade in an application of AAB, including key dehydrogenases involved in the application, regeneration of dehydrogenase cofactors, ETC coupling with cofactor regeneration and ETC regulation, is systematically reviewed and discussed. As they have great application value, a deep understanding of the mechanisms through which AAB function will not only promote their utilization and development but also provide a reference for engineering of other industrial strains.
Collapse
Affiliation(s)
- Zhijie Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|
10
|
Yi D, Acharya A, Gumbart JC, Gutekunst WR, Agarwal V. Gatekeeping Ketosynthases Dictate Initiation of Assembly Line Biosynthesis of Pyrrolic Polyketides. J Am Chem Soc 2021; 143:7617-7622. [DOI: 10.1021/jacs.1c02371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Mohanty I, Moore SG, Yi D, Biggs JS, Gaul DA, Garg N, Agarwal V. Precursor-Guided Mining of Marine Sponge Metabolomes Lends Insight into Biosynthesis of Pyrrole-Imidazole Alkaloids. ACS Chem Biol 2020; 15:2185-2194. [PMID: 32662980 DOI: 10.1021/acschembio.0c00375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrrole-imidazole alkaloids are natural products isolated from marine sponges, holobiont metazoans that are associated with symbiotic microbiomes. Pyrrole-imidazole alkaloids have attracted attention due to their chemical complexity and their favorable pharmacological properties. However, insights into how these molecules are biosynthesized within the sponge holobionts are scarce. Here, we provide a multiomic profiling of the microbiome and metabolomic architectures of three sponge genera that are prolific producers of pyrrole-imidazole alkaloids. Using a retrobiosynthetic scheme as a guide, we mine the metabolomes of these sponges to detect intermediates in pyrrole-imidazole alkaloid biosynthesis. Our findings reveal that the nonproteinogenic amino acid homoarginine is a critical branch point that connects primary metabolite lysine to the production of pyrrole-imidazole alkaloids. These insights are derived from the polar metabolomes of these sponges which additionally reveal the presence of zwitterionic betaines that may serve important ecological roles in marine habitats. We also establish that metabolomic richness does not correlate with microbial diversity of the sponge holobiont for neither the polar nor the nonpolar metabolomes. Our findings now provide the biochemical foundation for genomic interrogation of the sponge holobiont to establish biogenetic routes for pyrrole-imidazole alkaloid production.
Collapse
Affiliation(s)
- Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jason S. Biggs
- Marine Laboratory, University of Guam, UOG Station, Mangilao 96923, Guam
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 2020; 37:355-379. [PMID: 31593192 PMCID: PMC7101270 DOI: 10.1039/c9np00047j] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| |
Collapse
|
13
|
Corpuz JC, Podust LM, Davis TD, Jaremko MJ, Burkart MD. Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis. RSC Chem Biol 2020; 1:8-12. [PMID: 33305272 PMCID: PMC7723355 DOI: 10.1039/c9cb00015a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Using a covalent chemical probe and X-ray crystallography coupled to nuclear magnetic resonance data, we elucidated the dynamic molecular basis of protein recognition between the carrier protein and adenylation domain in pyoluteorin biosynthesis. These findings reveal a unique binding mode, which contrasts previously solved carrier protein and partner protein interfaces. The interface interactions of a type II peptidyl carrier protein and partner enzyme are observed to be unique and dynamic.![]()
Collapse
Affiliation(s)
- Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0755, USA
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|