1
|
Rossetti P, Trollmann MFW, Wichmann C, Gutsmann T, Eggeling C, Böckmann RA. From Membrane Composition to Antimicrobial Strategies: Experimental and Computational Approaches to AMP Design and Selectivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411476. [PMID: 40528540 DOI: 10.1002/smll.202411476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 05/07/2025] [Indexed: 06/20/2025]
Abstract
The United Nations have committed to end the epidemics of communicable diseases by 2030 (SDG Target 3.3). In contrast with this ambition, the rise of Multi Drug Resistant (MDR) and Pan Drug Resistant (PDR) bacteria poses a threat of a return to the pre-antibiotic era. It is of high priority to find new therapies that target the ESKAPEE group of pathogens and their drug-resistant strains. Antimicrobial peptides (AMPs) are an emerging class of antibiotics that hold promises of overcoming bacterial resistance by using both novel mechanisms of action as well as targeting already known pathways. The chemical space of AMPs is potentially huge and methodologies allowing the rational exploration of novel structures are highly needed. This review focuses on case studies that give novel insights about the mechanisms of action, resistance and selectivity of some relevant AMPs, exemplifying the importance of microscopic, computational and experimental tools. Particular focus will be devoted to bacterial membranes and how AMPs can target them while sparing human plasma membranes, in order to become safer drugs. The lessons learned from the literature cases give directions toward the development of AMPs as drug products.
Collapse
Affiliation(s)
- Paolo Rossetti
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Marius F W Trollmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91058, Erlangen, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), 91058, Erlangen, Germany
| | - Christina Wichmann
- Institute of Applied Optics and Biophysics, Friedrich-Schiller University Jena, 07743, Jena, Germany
- Department Biophysical Imaging, Leibniz Institute of Photonic Technologies e.V., 07745, Jena, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, 23845, Borstel, Germany
- Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich-Schiller University Jena, 07743, Jena, Germany
- Department Biophysical Imaging, Leibniz Institute of Photonic Technologies e.V., 07745, Jena, Germany
- Jena Center for Soft Matter, 07743, Jena, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91058, Erlangen, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), 91058, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), 91054, Erlangen, Germany
| |
Collapse
|
2
|
Yuan Y, Li J, Wei G, Shen Z, Li B, Wu J, Liu J. Exploring the Antimicrobial Potential of LL-37 Derivatives: Recent Developments and Challenges. ACS Biomater Sci Eng 2025. [PMID: 40423576 DOI: 10.1021/acsbiomaterials.4c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The human antimicrobial peptide LL-37 exhibits broad antimicrobial efficacy. However, it has several limitations including high production costs, reduced efficacy under physiological conditions, susceptibility to proteolytic degradation and significant toxicity to human cells. Recent research has improved the clinical potential of peptide LL-37 through multiple systematic modifications. Therefore, we review the various modification techniques for LL-37 and explore the structure-activity relationships that underpin its antimicrobial properties. We also highlight the benefits of LL-37 derivatives and investigate their mechanisms of action against bacterial infections, particularly their effects on biofilms and cell membranes. Furthermore, we review the antimicrobial applications of LL-37 derivatives, examine nanocarrier systems for their delivery, and highlight the potential synergy between these derivatives and traditional antibiotics. Finally, it assesses the status of LL-37 derivatives in clinical applications, identifies ongoing challenges, and provides insights into future modifications and potential applications. This review aims to offer valuable strategies for enhancing LL-37 derivatives and facilitating their transition from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Yihao Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Jiapeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Guotao Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Ziyi Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Bo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Bi Z, Ren W, Zeng H, Zhou Y, Liu J, Chen Z, Zhang X, He X, Lu G, Wei Y, Wei X. LL-37 Inhibits TMPRSS2-Mediated S2' Site Cleavage and SARS-CoV-2 Infection but Not Omicron Variants. Cell Prolif 2025:e70060. [PMID: 40375579 DOI: 10.1111/cpr.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
Continual evolution of SARS-CoV-2 spike drives the emergence of Omicron variants that show increased spreading and immune evasion. Understanding how the variants orientate themselves towards host immune defence is crucial for controlling future pandemics. Herein, we demonstrate that human cathelicidin LL-37, a crucial component of innate immunity, predominantly binds to the S2 subunit of SARS-CoV-2 spike protein, occupying sites where TMPRSS2 typically binds. This binding impedes TMPRSS2-mediated priming at site S2' and subsequent membrane fusion processes. The mutation N764K within S2 subunit of Omicron variants reduces affinity for LL-37 significantly, thereby diminishing binding capacity and inhibitory effects on membrane fusion. Moreover, the early humoral immune response enhanced by LL-37 is observed in mice against SARS-CoV-2 spike but not Omicron BA.4/5 spike. These findings reveal the mechanism underlying interactions amongst LL-37, TMPRSS2 and SARS-CoV-2 and VOCs, and highlight the distinct mutation for Omicron variants to evade the fusion activity inhibition by host innate immunity.
Collapse
Affiliation(s)
- Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zhou
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xindan Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Gonzalez BD, Forbrig E, Yao G, Kielb P, Mroginski MA, Hildebrandt P, Kozuch J. Cation Dependence of Enniatin B/Membrane-Interactions Assessed Using Surface-Enhanced Infrared Absorption (SEIRA) Spectroscopy. Chempluschem 2024; 89:e202400159. [PMID: 38700478 DOI: 10.1002/cplu.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Enniatins are mycotoxins with well-known antibacterial, antifungal, antihelmintic and antiviral activity, which have recently come to attention as potential mitochondriotoxic anticancer agents. The cytotoxicity of enniatins is traced back to ionophoric properties, in which the cyclodepsipeptidic structure results in enniatin:cation-complexes of various stoichiometries proposed as membrane-active species. In this work, we employed a combination of surface-enhanced infrared absorption (SEIRA) spectroscopy, tethered bilayer lipid membranes (tBLMs) and density functional theory (DFT)-based computational spectroscopy to monitor the cation-dependence (Mz+=Na+, K+, Cs+, Li+, Mg2+, Ca2+) on the mechanism of enniatin B (EB) incorporation into membranes and identify the functionally relevant EBn : Mz+ complexes formed. We find that Na+ promotes a cooperative incorporation, modelled via an autocatalytic mechanism and mediated by a distorted 2 : 1-EB2 : Na+ complex. K+ (and Cs+) leads to a direct but less efficient insertion into membranes due to the adoption of "ideal" EB2 : K+ sandwich complexes. In contrast, the presence of Li+, Mg2+, and Ca2+ causes a (partial) extraction of EB from the membrane via the formation of "belted" 1 : 1-EB : Mz+ complexes, which screen the cationic charge less efficiently. Our results point to a relevance of the cation dependence for the transport into the malignant cells where the mitochondriotoxic anticancer activity is exerted.
Collapse
Affiliation(s)
- Barbara Daiana Gonzalez
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Enrico Forbrig
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Guiyang Yao
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, D-10623, Berlin, Germany
| | - Patrycja Kielb
- Clausius Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstr. 12, D-53115, Bonn, Germany
- Transdisciplinary Research Area', Building Blocks of Matter and Fundamental Interactions (TRA Matter), Universität Bonn, D-53115, Bonn, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Jacek Kozuch
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
- Forschungsbau SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
5
|
Han J, Meade J, Devine D, Sadeghpour A, Rappolt M, Goycoolea FM. Chitosan-coated liposomal systems for delivery of antibacterial peptide LL17-32 to Porphyromonas gingivalis. Heliyon 2024; 10:e34554. [PMID: 39149035 PMCID: PMC11325287 DOI: 10.1016/j.heliyon.2024.e34554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontal disease is triggered by surface bacterial biofilms where bacteria are less susceptible to antibiotic treatment. The development of liposome-based delivery mechanisms for the therapeutic use of antimicrobial peptides is an attractive alternative in this regard. The cationic antimicrobial peptide LL-37 (human cathelicidin) is well-known to exert antibacterial activity against P orphyromonas gingivalis, a keystone oral pathogen. However, the antibacterial activity of the 16-amino acid fragment (LL17-32) of LL-37, is unknown. In addition, there are still gaps in studies using liposomal formulations as delivery vehicles of antibacterial peptides against this pathogen. This study was designed to examine the influence of the different types of liposomal formulations to associate and deliver LL17-32 to act against P. gingivalis. Chitosans of varying Mw and degree of acetylation (DA) were adsorbed at the surface of soya lecithin (SL) liposomes. Their bulk (average hydrodynamic size, ζ-potential and membrane fluidity) and ultrastructural (d-spacing, half-bilayer thickness and the water layer thickness) biophysical properties were investigated by a panel of techniques (DLS, SAXS, M3-PALS, fluorescence spectroscopy and TEM imaging). Their association efficiency, in vitro release, stability, and efficacy in killing the periodontal pathogen P. gingivalis were also investigated. All liposomal systems possessed spherical morphologies and good shelf-life stabilities. Under physiological conditions, chitosan formulations with a high DA demonstrated enhanced stability in comparison to low DA-chitosan formulations. Chitosans and LL17-32 both decreased SL-liposomal membrane fluidity. LL17-32 exhibited a high degree of association with SL-liposomes without in vitro release. In biological studies, free LL17-32 or chitosans alone, demonstrated microbicidal activity against P. gingivalis, however this was attenuated when LL17-32 was loaded onto the SL-liposome delivery system, presumably due to the restrained release of the peptide. A property that could be harnessed in future studies (e.g., oral mucoadhesive slow-release formulations).
Collapse
Affiliation(s)
- Jinyang Han
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Josephine Meade
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Deirdre Devine
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
- Department of Cell Biology and Histology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
6
|
Hiller M, Diwo M, Wamp S, Gutsmann T, Lang C, Blankenfeldt W, Flieger A. Structure-function relationships underpin disulfide loop cleavage-dependent activation of Legionella pneumophila lysophospholipase A PlaA. Mol Microbiol 2024; 121:497-512. [PMID: 38130174 DOI: 10.1111/mmi.15201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Legionella pneumophila, the causative agent of a life-threatening pneumonia, intracellularly replicates in a specialized compartment in lung macrophages, the Legionella-containing vacuole (LCV). Secreted proteins of the pathogen govern important steps in the intracellular life cycle including bacterial egress. Among these is the type II secreted PlaA which, together with PlaC and PlaD, belongs to the GDSL phospholipase family found in L. pneumophila. PlaA shows lysophospholipase A (LPLA) activity which increases after secretion and subsequent processing by the zinc metalloproteinase ProA within a disulfide loop. Activity of PlaA contributes to the destabilization of the LCV in the absence of the type IVB-secreted effector SdhA. We here present the 3D structure of PlaA which shows a typical α/β-hydrolase fold and reveals that the uncleaved disulfide loop forms a lid structure covering the catalytic triad S30/D278/H282. This leads to reduction of substrate access before activation; however, the catalytic site gets more accessible when the disulfide loop is processed. After structural modeling, a similar activation process is suggested for the GDSL hydrolase PlaC, but not for PlaD. Furthermore, the size of the PlaA substrate-binding site indicated preference toward phospholipids comprising ~16 carbon fatty acid residues which was verified by lipid hydrolysis, suggesting a molecular ruler mechanism. Indeed, mutational analysis changed the substrate profile with respect to fatty acid chain length. In conclusion, our analysis revealed the structural basis for the regulated activation and substrate preference of PlaA.
Collapse
Affiliation(s)
- Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch Institute, Wernigerode, Germany
| | - Maurice Diwo
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabrina Wamp
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch Institute, Wernigerode, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz Lung Center, Division of Biophysics, Borstel, Germany
- CSSB-Centre for Structural Systems Biology, Hamburg, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch Institute, Wernigerode, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
7
|
Wang Z, Xu J, Zeng X, Du Q, Lan H, Zhang J, Pan D, Tu M. Recent Advances on Antimicrobial Peptides from Milk: Molecular Properties, Mechanisms, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:80-93. [PMID: 38152984 DOI: 10.1021/acs.jafc.3c07217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.
Collapse
Affiliation(s)
- Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
8
|
Paschke RR, Mohr S, Lange S, Lange A, Kozuch J. In Situ Spectroscopic Detection of Large-Scale Reorientations of Transmembrane Helices During Influenza A M2 Channel Opening. Angew Chem Int Ed Engl 2023; 62:e202309069. [PMID: 37733579 DOI: 10.1002/anie.202309069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Viroporins are small ion channels in membranes of enveloped viruses that play key roles during viral life cycles. To use viroporins as drug targets against viral infection requires in-depth mechanistic understanding and, with that, methods that enable investigations under in situ conditions. Here, we apply surface-enhanced infrared absorption (SEIRA) spectroscopy to Influenza A M2 reconstituted within a solid-supported membrane, to shed light on the mechanics of its viroporin function. M2 is a paradigm of pH-activated proton channels and controls the proton flux into the viral interior during viral infection. We use SEIRA to track the large-scale reorientation of M2's transmembrane α-helices in situ during pH-activated channel opening. We quantify this event as a helical tilt from 26° to 40° by correlating the experimental results with solid-state nuclear magnetic resonance-informed computational spectroscopy. This mechanical motion is impeded upon addition of the inhibitor rimantadine, giving a direct spectroscopic marker to test antiviral activity. The presented approach provides a spectroscopic tool to quantify large-scale structural changes and to track the function and inhibition of the growing number of viroporins from pathogenic viruses in future studies.
Collapse
Affiliation(s)
- Ronja Rabea Paschke
- Physics Department, Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195, Berlin, Germany
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, 14195, Berlin, Germany
| | - Swantje Mohr
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Sascha Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Jacek Kozuch
- Physics Department, Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195, Berlin, Germany
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, 14195, Berlin, Germany
| |
Collapse
|
9
|
Leite ML, Duque HM, Rodrigues GR, da Cunha NB, Franco OL. The LL-37 domain: a clue to cathelicidin immunomodulatory response? Peptides 2023; 165:171011. [PMID: 37068711 DOI: 10.1016/j.peptides.2023.171011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Host defense peptides (HDPs) are naturally occurring polypeptide sequences that, in addition to being active against bacteria, fungi, viruses, and other parasites, may stimulate immunomodulatory responses. Cathelicidins, a family of HDPs, are produced by diverse animal species, such as mammals, fish, birds, amphibians, and reptiles, to protect them against pathogen infections. These peptides have variable C-terminal domains responsible for their antimicrobial and immunomodulatory activities and a highly conserved N-terminal pre-pro region homologous to cathelin. Although cathelicidins are the major components of innate immunity, the molecular basis by which they induce an immune response is still unclear. In this review, we will address the role of the LL-37 domain and its SK-24, IV-20, FK-13 and LL-37 fragments in the immunity response. Other cathelicidins also share structural and functional characteristics with the LL-37 domain, suggesting that these fragments may be responsible for interaction between these peptides and receptors in humans. Fragments of the LL-37 domain can give us clues about how homologous cathelicidins, in general, induce an immune response. AVAILABILITY OF DATA AND MATERIAL: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasília, Brasil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
10
|
Mohammadi Z, Pishkar L, Eftekhari Z, Barzin G, Babaeekhou L. The Human Host Defense Peptide LL-37 Overexpressed in Lung Cell Lines by Methanolic Extract of Valeriana officinalis. BRAZ J PHARM SCI 2023; 59. [DOI: 10.1590/s2175-97902023e21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
|
11
|
Keikha M, Kamali H, Ghazvini K, Karbalaei M. Antimicrobial peptides: natural or synthetic defense peptides against HBV and HCV infections. Virusdisease 2022; 33:445-455. [PMID: 36447811 PMCID: PMC9701303 DOI: 10.1007/s13337-022-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
According to the literature, treatment of HCV and HBV infections faces challenges due to problems such as the emergence of drug-resistant mutants, the high cost of treatment, and the side effects of current antiviral therapy. Antimicrobial peptides (AMPs), a group of small peptides, are a part of the immune system and are considered as an alternative treatment for microbial infections. These peptides are water-soluble with amphiphilic (hydrophilic and hydrophobic surfaces) characteristics. AMPs are produced by a wide range of organisms including both prokaryotic and eukaryotic cells. The antiviral mechanisms of AMPs include inhibiting virus entry, inhibiting intracellular virus replication, inhibiting intracellular viral packaging, and inducing immune responses. In addition, AMPs are a new generation of antiviral biomolecules that have very low toxicity for human host cells, particularly liver cell lines. AMPs can be considered as one of the most important strategies for developing new adjuvant drugs in the treatment of HBV and HCV infections. In the present study, several groups of AMPs (with a net positive charge) such as Human cathelicidin, Claudin-1, Defensins, Hepcidin, Lactoferrin, Casein, Plectasin, Micrococcin P1, Scorpion venom, and Synthetic peptides were reviewed with antiviral properties against HBV and HCV.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
12
|
Machado A, Pereira I, Silva V, Pires I, Prada J, Poeta P, Costa L, Pereira JE, Gama M. Injectable hydrogel as a carrier of vancomycin and a cathelicidin-derived peptide for osteomyelitis treatment. J Biomed Mater Res A 2022; 110:1786-1800. [PMID: 36082973 DOI: 10.1002/jbm.a.37432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 08/26/2023]
Abstract
A local drug delivery system that attempts to find a suitable balance between antimicrobial and regenerative actions was developed for osteomyelitis treatment (OM). This system combines the angiogenic and immunomodulatory peptide LLKKK18 (LL18) and vancomycin hydrochloride (VH), loaded into an injectable oxidized dextrin (ODEX)-based hydrogel (HG). In vitro cytotoxicity was analyzed in MC3T3-E1 pre-osteoblasts and erythrocytes. The kinetics of LL18 release was studied. Antimicrobial activity was assessed in vitro against a clinical Methicillin-Resistant Staphylococcus aureus (MRSA) strain. A rat model of acute OM was developed by direct inoculation into a tibia defect, concomitantly with the implantation of the drug-loaded HG. The local bioburden was quantified and damage in surrounding tissues was examined histologically. In vitro, ODEX-based HG displayed a safe hemolytic profile. Half of LL18 (53%) is released during the swelling phase at physiological pH, then being gradually released until complete HG degradation. LL18-loaded HG at 300 μM was the most effective peptide formulation in decreasing in vivo infection among concentrations ranging from 86 to 429 μM. The histopathological scores observed in vivo varied with the LL18 concentration in a dose-dependent manner. VH at 28 mM completely eradicated bacteria, although with substantial tissue injury. We have found that sub-millimolar doses of VH combined with LL18 at 300 μM may suffice to eradicate the infection, with reduced tissue damage. We propose an easy-to-handle, shape-fitting HG formulation with the potential to treat MRSA-infected bone with low VH doses associated with LL18.
Collapse
Affiliation(s)
- Alexandra Machado
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS, Associate Laboratory, Braga Guimarães, Portugal
| | - Isabel Pereira
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS, Associate Laboratory, Braga Guimarães, Portugal
| | - Vanessa Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University NOVA of Lisbon, Caparica, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Patrícia Poeta
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University NOVA of Lisbon, Caparica, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Luís Costa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - José Eduardo Pereira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Miguel Gama
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS, Associate Laboratory, Braga Guimarães, Portugal
| |
Collapse
|
13
|
Utesch T, Staffa J, Katz S, Yao G, Kozuch J, Hildebrandt P. Potential Distribution across Model Membranes. J Phys Chem B 2022; 126:7664-7675. [PMID: 36137267 DOI: 10.1021/acs.jpcb.2c05372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane models assembled on electrodes are widely used tools to study potential-dependent molecular processes at or in membranes. However, the relationship between the electrode potential and the potential across the membrane is not known. Here we studied lipid bilayers immobilized on mixed self-assembled monolayers (SAM) on Au electrodes. The mixed SAM was composed of thiol derivatives of different chain lengths such that between the islands of the short one, mercaptobenzonitrile (MBN), and the tethered lipid bilayer an aqueous compartment was formed. The nitrile function of MBN, which served as a reporter group for the vibrational Stark effect (VSE), was probed by surface-enhanced infrared absorption spectroscopy to determine the local electric field as a function of the electrode potential for pure MBN, mixed SAM, and the bilayer system. In parallel, we calculated electric fields at the VSE probe by molecular dynamics (MD) simulations for different charge densities on the metal, thereby mimicking electrode potential changes. The agreement with the experiments was very good for the calculations of the pure MBN SAM and only slightly worse for the mixed SAM. The comparison with the experiments also guided the design of the bilayer system in the MD setups, which were selected to calculate the electrode potential dependence of the transmembrane potential, a quantity that is not directly accessible by the experiments. The results agree very well with estimates in previous studies and thus demonstrate that the present combined experimental-theoretical approach is a promising tool for describing potential-dependent processes at biomimetic interfaces.
Collapse
Affiliation(s)
- Tillmann Utesch
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Jana Staffa
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Guiyang Yao
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jacek Kozuch
- Fachbereich Physik, Experimentelle Molekulare Biophysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.,Forschungsbau SupraFAB, Altensteinstr. 23a, D-14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
14
|
Flagellin lysine methyltransferase FliB catalyzes a [4Fe-4S] mediated methyl transfer reaction. PLoS Pathog 2021; 17:e1010052. [PMID: 34788341 PMCID: PMC8598068 DOI: 10.1371/journal.ppat.1010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
The methyltransferase FliB posttranslationally modifies surface-exposed ɛ-N-lysine residues of flagellin, the protomer of the flagellar filament in Salmonella enterica (S. enterica). Flagellin methylation, reported originally in 1959, was recently shown to enhance host cell adhesion and invasion by increasing the flagellar hydrophobicity. The role of FliB in this process, however, remained enigmatic. In this study, we investigated the properties and mechanisms of FliB from S. enterica in vivo and in vitro. We show that FliB is an S-adenosylmethionine (SAM) dependent methyltransferase, forming a membrane associated oligomer that modifies flagellin in the bacterial cytosol. Using X-band electron paramagnetic resonance (EPR) spectroscopy, zero-field 57Fe Mössbauer spectroscopy, methylation assays and chromatography coupled mass spectrometry (MS) analysis, we further found that FliB contains an oxygen sensitive [4Fe-4S] cluster that is essential for the methyl transfer reaction and might mediate a radical mechanism. Our data indicate that the [4Fe-4S] cluster is coordinated by a cysteine rich motif in FliB that is highly conserved among multiple genera of the Enterobacteriaceae family.
Collapse
|
15
|
Freire RV, Pillco-Valencia Y, da Hora GC, Ramstedt M, Sandblad L, Soares TA, Salentinig S. Antimicrobial peptide induced colloidal transformations in bacteria-mimetic vesicles: Combining in silico tools and experimental methods. J Colloid Interface Sci 2021; 596:352-363. [DOI: 10.1016/j.jcis.2021.03.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023]
|
16
|
Majewska M, Zamlynny V, Pieta IS, Nowakowski R, Pieta P. Interaction of LL-37 human cathelicidin peptide with a model microbial-like lipid membrane. Bioelectrochemistry 2021; 141:107842. [PMID: 34049238 DOI: 10.1016/j.bioelechem.2021.107842] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
The only representative of cathelicidin peptides in humans is LL-37, a multifunctional antimicrobial peptide (AMP) that is a part of the innate immune response. Details of the LL-37 direct activity against pathogens are not well understood at the molecular level. Here, we present research on the mechanism of interaction between LL-37 and a model multicomponent bilayer lipid membrane (BLM), mimicking microbial cell membrane. Electrochemical impedance spectroscopy (EIS), high-resolution atomic force microscopy (AFM) imaging, and polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) were applied to study the peptide influence on a model microbial-like membrane. We show that LL-37 causes changes in the phospholipid molecules conformation and orientation, leading to membrane disintegration, significantly affecting the membrane electrical parameters, such as capacitance and resistance. High-resolution AFM imaging shows topographical and mechanical effects of such disintegration, while PM-IRRAS data indicates that introduction of LL-37 causes changes in the phospholipid acyl chains from all-trans to gauche conformations. Moreover, the presence of LL-37 significantly alters the value of the phospholipid tilt angle. Altogether, our results suggest a "carpet" membrane dissolution followed by a detergent-like membrane disruption mechanism upon LL-37 activity. This research gives a novel insight into the understanding of LL-37 influence on multicomponent model membranes and a promising contribution to the development of LL-37-derived therapeutic agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Marta Majewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vlad Zamlynny
- Chemistry Department, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada
| | - Izabela S Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Nowakowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
17
|
Paulowski L, Donoghue A, Nehls C, Groth S, Koistinen M, Hagge SO, Böhling A, Winterhalter M, Gutsmann T. The Beauty of Asymmetric Membranes: Reconstitution of the Outer Membrane of Gram-Negative Bacteria. Front Cell Dev Biol 2020; 8:586. [PMID: 32766244 PMCID: PMC7381204 DOI: 10.3389/fcell.2020.00586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Abstract
The architecture of the lipid matrix of the outer membrane of Gram-negative bacteria is extremely asymmetric: Whereas the inner leaflet is composed of a phospholipid mixture, the outer leaflet is built up by glycolipids. For most Gram-negative species, these glycolipids are lipopolysaccharides (LPS), for a few species, however, glycosphingolipids. We demonstrate experimental approaches for the reconstitution of these asymmetric membranes as (i) solid supported membranes prepared by the Langmuir-Blodgett technique, (ii) planar lipid bilayers prepared by the Montal-Mueller technique, and (iii) giant unilamellar vesicles (GUVs) prepared by the phase transfer method. The asymmetric GUVs (aGUVs) composed of LPS on one leaflet are shown for the first time. They are characterized with respect to their phase behavior, flip-flop of lipids and their usability to investigate the interaction with membrane active peptides or proteins. For the antimicrobial peptide LL-32 and for the bacterial porin OmpF the specificity of the interaction with asymmetric membranes is shown. The three reconstitution systems are compared with respect to their usability to investigate domain formation and interactions with peptides and proteins.
Collapse
Affiliation(s)
- Laura Paulowski
- Division of Biophysics, Priority Research Area Infection, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- Division of Diagnostic Mycobacteriology, Priority Research Area Infection, National Reference Center for Mycobacteria, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Annemarie Donoghue
- Division of Biophysics, Priority Research Area Infection, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- Department of Life Sciences & Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Christian Nehls
- Division of Biophysics, Priority Research Area Infection, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Sabrina Groth
- Division of Biophysics, Priority Research Area Infection, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Max Koistinen
- Division of Biophysics, Priority Research Area Infection, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Sven O. Hagge
- Division of Biophysics, Priority Research Area Infection, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Arne Böhling
- Division of Biophysics, Priority Research Area Infection, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Mathias Winterhalter
- Department of Life Sciences & Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Priority Research Area Infection, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
18
|
|
19
|
Zou P, Chen WT, Sun T, Gao Y, Li LL, Wang H. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomater Sci 2020; 8:4975-4996. [DOI: 10.1039/d0bm00789g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacterial infections, especially the refractory treatment of drug-resistant bacteria, are one of the greatest threats to human health. Self-assembling peptide-based strategies can specifically detect the bacteria at the site of infection in the body and kill it.
Collapse
Affiliation(s)
- Pengfei Zou
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Wen-Ting Chen
- Department of Chemistry and the Department of Physics and Astronomy
- University of Waterloo
- Waterloo
- Canada
| | - Tongyi Sun
- School of Life Science and Technology
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering
- Shandong Universities Key Laboratory of Biopharmaceuticals
- Weifang Medical University
- Weifang
| | - Yuanyuan Gao
- School of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| |
Collapse
|
20
|
LL-37: Review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|