1
|
Kolasangiani R, Farzanian K, Chen Y, Schwartz MA, Bidone TC. Conformational response of α IIbβ 3 and α Vβ 3 integrins to force. Structure 2025; 33:289-299.e4. [PMID: 39706199 DOI: 10.1016/j.str.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
As major adhesion receptors, integrins transmit biochemical and mechanical signals across the plasma membrane. These functions are regulated by transitions between bent and extended conformations and modulated by force. To understand how force on integrins mediates cellular mechanosensing, we compared two highly homologous integrins, αIIbβ3 and αVβ3. These integrins, expressed in circulating platelets vs. solid tissues, respectively, share the β3 subunit, bind similar ligands and have similar bent and extended conformations. Here, we report that in cells expressing equivalent levels of each integrin, αIIbβ3 mediates spreading on softer substrates than αVβ3. These effects correlate with differences in structural dynamics of the two integrins under force. All-atom simulations show that αIIbβ3 is more flexible than αVβ3 due to correlated residue motions within the α subunit domains. Single molecule measurements confirm that αIIbβ3 extends faster than αVβ3. These results reveal a fundamental relationship between protein function and structural dynamics in cell mechanosensing.
Collapse
Affiliation(s)
- Reza Kolasangiani
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Khashayar Farzanian
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology and Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Elucidation of the molecular interactions that enable stable assembly and structural diversity in multicomponent immune receptors. Proc Natl Acad Sci U S A 2021; 118:2026318118. [PMID: 34155106 DOI: 10.1073/pnas.2026318118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multicomponent immune receptors are essential complexes in which distinct ligand-recognition and signaling subunits are held together by interactions between acidic and basic residues of their transmembrane helices. A 2:1 acidic-to-basic motif in the transmembrane domains of the subunits is necessary and sufficient to assemble these receptor complexes. Here, we study a prototype for these receptors, a DAP12-NKG2C 2:1 heterotrimeric complex, in which the two DAP12 subunits each contribute a single transmembrane Asp residue, and the NKG2C subunit contributes a Lys to form the complex. DAP12 can also associate with 20 other subunits using a similar motif. Here, we use molecular-dynamics simulations to understand the basis for the high affinity and diversity of interactions in this group of receptors. Simulations of the transmembrane helices with differing protonation states of the Asp-Asp-Lys triad identified a structurally stable interaction in which a singly-protonated Asp-Asp pair forms a hydrogen-bonded carboxyl-carboxylate clamp that clasps onto a charged Lys side chain. This polar motif was also supported by density functional theory and a Protein Data Bank-wide search. In contrast, the helices are dynamic at sites distal to the stable carboxyl-carboxylate clamp motif. Such a locally stable but globally dynamic structure is well suited to accommodate the sequence and structural variations in the transmembrane helices of multicomponent receptors, which mix and match subunits to create combinatorial functional diversity from a limited number of subunits. It also supports a signaling mechanism based on multisubunit clustering rather than propagation of rigid conformational changes through the membrane.
Collapse
|
3
|
Xue T, Wu W, Guo N, Wu C, Huang J, Lai L, Liu H, Li Y, Wang T, Wang Y. Single point mutations can potentially enhance infectivity of SARS-CoV-2 revealed by in silico affinity maturation and SPR assay. RSC Adv 2021; 11:14737-14745. [PMID: 35423963 PMCID: PMC8697837 DOI: 10.1039/d1ra00426c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/11/2021] [Indexed: 02/05/2023] Open
Abstract
The RBD (receptor binding domain) of the SARS-CoV-2 virus S (spike) protein mediates viral cell attachment and serves as a promising target for therapeutics development. Mutations on the S-RBD may alter its affinity to the cell receptor and affect the potency of vaccines and antibodies. Here we used an in silico approach to predict how mutations on RBD affect its binding affinity to hACE2 (human angiotensin-converting enzyme2). The effect of all single point mutations on the interface was predicted. SPR assay results show that 6 out of 9 selected mutations can strengthen binding affinity. Our prediction has reasonable agreement with the previous deep mutational scan results and recently reported mutants. Our work demonstrated the in silico method as a powerful tool to forecast more powerful virus mutants, which will significantly benefit the development of broadly neutralizing vaccine and antibody.
Collapse
Affiliation(s)
- Ting Xue
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Weikun Wu
- XtalPi AI Research Center 7F, Tower B, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District Beijing 100083 P. R. China
| | - Ning Guo
- XtalPi AI Research Center 7F, Tower B, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District Beijing 100083 P. R. China
| | - Chengyong Wu
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Jian Huang
- XtalPi AI Research Center 7F, Tower B, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District Beijing 100083 P. R. China
| | - Lipeng Lai
- XtalPi AI Research Center 7F, Tower B, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District Beijing 100083 P. R. China
| | - Hong Liu
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Yalun Li
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Tianyuan Wang
- XtalPi AI Research Center 7F, Tower B, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District Beijing 100083 P. R. China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Precision Medicine Research Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
4
|
Naudin EA, McEwen AG, Tan SK, Poussin-Courmontagne P, Schmitt JL, Birck C, DeGrado WF, Torbeev V. Acyl Transfer Catalytic Activity in De Novo Designed Protein with N-Terminus of α-Helix As Oxyanion-Binding Site. J Am Chem Soc 2021; 143:3330-3339. [PMID: 33635059 PMCID: PMC8012002 DOI: 10.1021/jacs.0c10053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The design of catalytic proteins with functional sites capable of specific chemistry is gaining momentum and a number of artificial enzymes have recently been reported, including hydrolases, oxidoreductases, retro-aldolases, and others. Our goal is to develop a peptide ligase for robust catalysis of amide bond formation that possesses no stringent restrictions to the amino acid composition at the ligation junction. We report here the successful completion of the first step in this long-term project by building a completely de novo protein with predefined acyl transfer catalytic activity. We applied a minimalist approach to rationally design an oxyanion hole within a small cavity that contains an adjacent thiol nucleophile. The N-terminus of the α-helix with unpaired hydrogen-bond donors was exploited as a structural motif to stabilize negatively charged tetrahedral intermediates in nucleophilic addition-elimination reactions at the acyl group. Cysteine acting as a principal catalytic residue was introduced at the second residue position of the α-helix N-terminus in a designed three-α-helix protein based on structural informatics prediction. We showed that this minimal set of functional elements is sufficient for the emergence of catalytic activity in a de novo protein. Using peptide-αthioesters as acyl-donors, we demonstrated their catalyzed amidation concomitant with hydrolysis and proved that the environment at the catalytic site critically influences the reaction outcome. These results represent a promising starting point for the development of efficient catalysts for protein labeling, conjugation, and peptide ligation.
Collapse
Affiliation(s)
- Elise A Naudin
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS (UMR 7006), Strasbourg 67000, France
| | - Alastair G McEwen
- Integrated Structural Biology Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), INSERM (U1258), University of Strasbourg, Illkirch 67404, France
| | - Sophia K Tan
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158-9001, United States
| | - Pierre Poussin-Courmontagne
- Integrated Structural Biology Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), INSERM (U1258), University of Strasbourg, Illkirch 67404, France
| | - Jean-Louis Schmitt
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS (UMR 7006), Strasbourg 67000, France
| | - Catherine Birck
- Integrated Structural Biology Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), INSERM (U1258), University of Strasbourg, Illkirch 67404, France
| | - William F DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158-9001, United States
| | - Vladimir Torbeev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS (UMR 7006), Strasbourg 67000, France
| |
Collapse
|
5
|
Yuan J, Cai J, Zhao P, Zhao N, Hong RH, Ding J, Yang J, Fan QL, Zhu J, Zhou XJ, Li ZZ, Zhu DS, Guan YT. Association Between Low-Density Lipoprotein Cholesterol and Platelet Distribution Width in Acute Ischemic Stroke. Front Neurol 2021; 12:631227. [PMID: 33746886 PMCID: PMC7973264 DOI: 10.3389/fneur.2021.631227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Elevated low-density lipoprotein cholesterol (LDL-C) is an established risk factor for ischemic stroke; however, whether LDL-C affects the platelet deformation function in the peripheral blood circulation in patients with acute ischemic stroke (AIS) is unknown. The present study aimed to investigate the relationship between LDL-C and platelet distribution width (PDW) in AIS patients. Methods: We conducted a cross-sectional hospitalized-based study of consecutive 438 patients with AIS within 24 h. Blood samples were collected upon admission and prior to drug administration, and LDL-C and PDW (a parameter that reflects the heterogeneity of platelet volume) were assessed. The relationship between LDL-C and PDW were analyzed by linear curve fitting analyses. Crude and adjusted beta coefficients of LDL-C for PDW with 95% confidence intervals were analyzed using multivariate-adjusted linear regression models. Results: The PDW was significantly higher in the high LDL-C group compared with those in the normal LDL-C group (16.28 ± 0.37 fl vs. 16.08 ± 0.37 fl, p < 0.001). Adjusted smoothed plots suggested that there are linear relationships between LDL-C and PDW, and the Pearson's correlation coefficient (95%) was 0.387 (0.304-0.464, p < 0.001). The beta coefficients (95% CI) between LDL-C and PDW were 0.15 (0.12-0.18, p < 0.001) and 0.14 (0.11-0.18, p < 0.001), respectively, in AIS patients before and after adjusting for potential confounders. Conclusion: Our study suggested that the elevated LDL-C level was related to increased PDW among AIS patients.
Collapse
Affiliation(s)
- Jian Yuan
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jian Cai
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei Zhao
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Zhao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Rong-Hua Hong
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Ding
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Yang
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing-Lei Fan
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jian Zhu
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xia-Jun Zhou
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ze-Zhi Li
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - De-Sheng Zhu
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang-Tai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
6
|
Polizzi NF, DeGrado WF. A defined structural unit enables de novo design of small-molecule-binding proteins. Science 2020; 369:1227-1233. [PMID: 32883865 PMCID: PMC7526616 DOI: 10.1126/science.abb8330] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
The de novo design of proteins that bind highly functionalized small molecules represents a great challenge. To enable computational design of binders, we developed a unit of protein structure-a van der Mer (vdM)-that maps the backbone of each amino acid to statistically preferred positions of interacting chemical groups. Using vdMs, we designed six de novo proteins to bind the drug apixaban; two bound with low and submicromolar affinity. X-ray crystallography and mutagenesis confirmed a structure with a precisely designed cavity that forms favorable interactions in the drug-protein complex. vdMs may enable design of functional proteins for applications in sensing, medicine, and catalysis.
Collapse
Affiliation(s)
- Nicholas F Polizzi
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|