1
|
Dent MR, Rose JJ, Tejero J, Gladwin MT. Carbon Monoxide Poisoning: From Microbes to Therapeutics. Annu Rev Med 2024; 75:337-351. [PMID: 37582490 PMCID: PMC11160397 DOI: 10.1146/annurev-med-052422-020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Carbon monoxide (CO) poisoning leads to 50,000-100,000 emergency room visits and 1,500-2,000 deaths each year in the United States alone. Even with treatment, survivors often suffer from long-term cardiac and neurocognitive deficits, highlighting a clear unmet medical need for novel therapeutic strategies that reduce morbidity and mortality associated with CO poisoning. This review examines the prevalence and impact of CO poisoning and pathophysiology in humans and highlights recent advances in therapeutic strategies that accelerate CO clearance and mitigate toxicity. We focus on recent developments of high-affinity molecules that take advantage of the uniquely strong interaction between CO and heme to selectively bind and sequester CO in preclinical models. These scavengers, which employ heme-binding scaffolds ranging from organic small molecules to hemoproteins derived from humans and potentially even microorganisms, show promise as field-deployable antidotes that may rapidly accelerate CO clearance and improve outcomes for survivors of acute CO poisoning.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Jason J Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| |
Collapse
|
2
|
Dent MR, Weaver BR, Roberts MG, Burstyn JN. Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression. J Bacteriol 2023; 205:e0033222. [PMID: 37154694 PMCID: PMC10210986 DOI: 10.1128/jb.00332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Carbon monoxide (CO) serves as a source of energy and carbon for a diverse set of microbes found in anaerobic and aerobic environments. The enzymes that bacteria and archaea use to oxidize CO depend upon complex metallocofactors that require accessory proteins for assembly and proper function. This complexity comes at a high energetic cost and necessitates strict regulation of CO metabolic pathways in facultative CO metabolizers to ensure that gene expression occurs only when CO concentrations and redox conditions are appropriate. In this review, we examine two known heme-dependent transcription factors, CooA and RcoM, that regulate inducible CO metabolism pathways in anaerobic and aerobic microorganisms. We provide an analysis of the known physiological and genomic contexts of these sensors and employ this analysis to contextualize known biochemical properties. In addition, we describe a growing list of putative transcription factors associated with CO metabolism that potentially use cofactors other than heme to sense CO.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian R. Weaver
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Madeleine G. Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Vos MH, Salman M, Liebl U. Early processes in heme-based CO-sensing proteins. Front Mol Biosci 2022; 9:1046412. [PMID: 36406263 PMCID: PMC9670170 DOI: 10.3389/fmolb.2022.1046412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Carbon monoxide has been recognized relatively recently as signaling molecule, and only very few dedicated natural CO sensor proteins have been identified so far. These include in particular heme-based transcription factors: the bacterial sensor proteins CooA and RcoM. In these 6-coordinated systems, exchange between an internal protein residue and CO as a heme ligand in the sensor domain affects the properties of the DNA-binding domain. Using light to dissociate heme-ligand bonds can in principle initiate this switching process. We review the efforts to use this method to investigate early processes in ligand switching and signaling, with an emphasis on the CO-“trappingˮ properties of the heme cavity. These features are unusual for most heme proteins, but common for heme-based CO sensors.
Collapse
|
4
|
Kapetanaki SM, Fekete Z, Dorlet P, Vos MH, Liebl U, Lukacs A. Molecular insights into the role of heme in the transcriptional regulatory system AppA/PpsR. Biophys J 2022; 121:2135-2151. [PMID: 35488435 DOI: 10.1016/j.bpj.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Heme has been shown to have a crucial role in the signal transduction mechanism of the facultative photoheterotrophic bacterium Rhodobacter sphaeroides. It interacts with the transcriptional regulatory complex AppA/PpsR in which AppA and PpsR function as the antirepressor and repressor, respectively of photosynthesis gene expression. The mechanism, however of this interaction remains incompletely understood. In this study, we combined EPR spectroscopy and FRET to demonstrate the ligation of heme in PpsR with a proposed cysteine residue. We show that heme binding in AppA affects the fluorescent properties of the dark-adapted state of the protein, suggesting a less constrained flavin environment compared to the absence of heme and the light-adapted state. We performed ultrafast transient absorption measurements in order to reveal potential differences in the dynamic processes in the full-length AppA and its heme-binding domain alone. Comparison of the CO-binding dynamics demonstrates a more open heme pocket in the holo-protein, qualitatively similar to what has been observed in the CO sensor RcoM-2, and suggests a communication path between the BLUF and SCHIC domains of AppA. We have also examined quantitatively, the affinity of PpsR to bind to individual DNA fragments of the puc promoter using fluorescence anisotropy assays. We conclude that oligomerization of PpsR is initially triggered by binding of one of the two DNA fragments and observe a ∼10-fold increase in the dissociation constant Kd for DNA binding upon heme binding to PpsR. Our study provides significant new insight at the molecular level on the regulatory role of heme that modulates the complex transcriptional regulation in R. sphaeroides and supports the two levels of heme signaling, via its binding to AppA and PpsR and via the sensing of gases like oxygen.
Collapse
Affiliation(s)
- Sofia M Kapetanaki
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; Szentagothai Research Center, University of Pecs, 7624 Pécs, Hungary.
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Pierre Dorlet
- Aix Marseille Univ, CNRS, BIP, IMM, Marseille, France
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; Szentagothai Research Center, University of Pecs, 7624 Pécs, Hungary.
| |
Collapse
|
5
|
Dent MR, Roberts MG, Bowman HE, Weaver BR, McCaslin DR, Burstyn JN. Quaternary Structure and Deoxyribonucleic Acid-Binding Properties of the Heme-Dependent, CO-Sensing Transcriptional Regulator PxRcoM. Biochemistry 2022; 61:678-688. [PMID: 35394749 PMCID: PMC11155679 DOI: 10.1021/acs.biochem.2c00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RcoM, a heme-containing, CO-sensing transcription factor, is one of two known bacterial regulators of CO metabolism. Unlike its analogue CooA, the structure and DNA-binding properties of RcoM remain largely uncharacterized. Using a combination of size exclusion chromatography and sedimentation equilibrium, we demonstrate that RcoM-1 from Paraburkholderia xenovorans is a dimer, wherein the heme-binding domain mediates dimerization. Using bioinformatics, we show that RcoM is found in three distinct genomic contexts, in accordance with the previous literature. We propose a refined consensus DNA-binding sequence for RcoM based on sequence alignments of coxM-associated promoters. The RcoM promoter consensus sequence bears two well-conserved direct repeats, consistent with other LytTR domain-containing transcription factors. In addition, there is a third, moderately conserved direct repeat site. Surprisingly, PxRcoM-1 requires all three repeat sites to cooperatively bind DNA with a [P]1/2 of 250 ± 10 nM and an average Hill coefficient, n, of 1.7 ± 0.1. The paralog PxRcoM-2 binds to the same triplet motif with comparable affinity and cooperativity. Considering this unusual DNA binding stoichiometry, that is, a dimeric protein with a triplet DNA repeat-binding site, we hypothesize that RcoM interacts with DNA in a manner distinct from other LytTR domain-containing transcription factors.
Collapse
Affiliation(s)
- Matthew R Dent
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Madeleine G Roberts
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hannah E Bowman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Brian R Weaver
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Darrell R McCaslin
- Biophysics Instrumentation Facility, Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Nishinaga M, Sugimoto H, Nishitani Y, Nagai S, Nagatoishi S, Muraki N, Tosha T, Tsumoto K, Aono S, Shiro Y, Sawai H. Heme controls the structural rearrangement of its sensor protein mediating the hemolytic bacterial survival. Commun Biol 2021; 4:467. [PMID: 33850260 PMCID: PMC8044140 DOI: 10.1038/s42003-021-01987-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Hemes (iron-porphyrins) are critical for biological processes in all organisms. Hemolytic bacteria survive by acquiring b-type heme from hemoglobin in red blood cells from their animal hosts. These bacteria avoid the cytotoxicity of excess heme during hemolysis by expressing heme-responsive sensor proteins that act as transcriptional factors to regulate the heme efflux system in response to the cellular heme concentration. Here, the underlying regulatory mechanisms were investigated using crystallographic, spectroscopic, and biochemical studies to understand the structural basis of the heme-responsive sensor protein PefR from Streptococcus agalactiae, a causative agent of neonatal life-threatening infections. Structural comparison of heme-free PefR, its complex with a target DNA, and heme-bound PefR revealed that unique heme coordination controls a >20 Å structural rearrangement of the DNA binding domains to dissociate PefR from the target DNA. We also found heme-bound PefR stably binds exogenous ligands, including carbon monoxide, a by-product of the heme degradation reaction.
Collapse
Affiliation(s)
- Megumi Nishinaga
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Hiroshi Sugimoto
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| | - Yudai Nishitani
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Seina Nagai
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Satoru Nagatoishi
- grid.26999.3d0000 0001 2151 536XThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Norifumi Muraki
- grid.250358.90000 0000 9137 6732Institute of Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi Japan
| | - Takehiko Tosha
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| | - Kouhei Tsumoto
- grid.26999.3d0000 0001 2151 536XThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Minato-ku, Tokyo Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Minato-ku, Tokyo Japan
| | - Shigetoshi Aono
- grid.250358.90000 0000 9137 6732Institute of Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi Japan
| | - Yoshitsugu Shiro
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan
| | - Hitomi Sawai
- grid.266453.00000 0001 0724 9317Graduate School of Life Science, University of Hyogo, Ako, Hyogo Japan ,RIKEN SPring-8 Center, Sayo, Hyogo Japan
| |
Collapse
|
7
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|