1
|
Miyazaki K, Kikukawa T, Unno M, Fujisawa T. Cryo-Raman Observation on the Photocycle of a Light-Driven Cl - Pump from Mastigocladopsis repens at High Cl - Concentration. J Phys Chem B 2025; 129:3740-3746. [PMID: 40178902 DOI: 10.1021/acs.jpcb.4c08322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
A retinylidene photoreceptor from the cyanobacterium Mastigocladopsis repens (MrHR) is a novel type of light-driven Cl- pump that has a structural similarity to the archaeal H+ pumps but transports Cl-. An open question regarding the photocycle of this photoreceptor involves the role of a late red-shifted photoproduct, the O intermediate, which is reportedly present at high Cl- concentrations. In this study, we used cryo-Raman spectroscopy to examine the chromophore structures of the photointermediates at a high Cl- concentration. When compared to the photointermediates formed as MrHR + hv → K → L → N1 → N2 → MrHR' at a low Cl- concentration, we found that N2 kinetically disappears at a high Cl- concentration. This indicated that N2 is the transient Cl--unbound state of MrHR. In addition, we found that no Raman signal of the O intermediate is observed at the high Cl- concentration, while the signal from N1 is exclusively observed in the later stages of the photocycle. After confirming that N1's absorption spectrum displays an extending red edge, we concluded that the O intermediate is attributable to the red edge of the absorption band of N1. Here, we report a revised understanding of the photocycle for Cl- transport of MrHR.
Collapse
Affiliation(s)
- Kana Miyazaki
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
2
|
Miyazaki K, Kikukawa T, Unno M, Fujisawa T. Chromophore Structural Change during the Photocycle of a Light-Driven Cl - Pump from Mastigocladopsis repens: A Cryogenic Raman Study. J Phys Chem B 2024; 128:9692-9698. [PMID: 39350671 DOI: 10.1021/acs.jpcb.4c04136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Microbial rhodopsins are the most widely distributed photoreceptors that bind a retinal Schiff base chromophore. Among them, a light-driven Cl- pump discovered from Mastigocladopsis repens (MrHR) is distinctive in that it has the structural features of both H+ and Cl- pumps. While the photocycle has been characterized by light-induced changes of the absorption spectrum, the structural changes of the retinal chromophore remain largely unknown. In this study, we examined the chromophore structural changes of MrHR by using cryogenic Raman spectroscopy. We observed five photointermediates─K, L, N1, N2, and MrHR'─that show distinct vibrational spectra, indicating atypical chromophore structures, e.g., small distortion in the K intermediate and Schiff base configurational change in the MrHR' intermediate. Based on the Raman spectra of two N intermediates (N1 and N2), we propose that N1 is the Cl--bound state and N2 is the Cl--unbound state, which are responsible for the Cl- release and uptake, respectively, to achieve Cl- pumping.
Collapse
Affiliation(s)
- Kana Miyazaki
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
3
|
Kaziannis S, Broser M, van Stokkum IHM, Dostal J, Busse W, Munhoven A, Bernardo C, Kloz M, Hegemann P, Kennis JTM. Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction. Proc Natl Acad Sci U S A 2024; 121:e2318996121. [PMID: 38478688 PMCID: PMC10962995 DOI: 10.1073/pnas.2318996121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Bestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of Phaeocystis antarctica bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11-cis RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11-cis and 13-cis RSB directly formed from the excited state in 1.4 ps. P673 evolves from P682 in 500 ps and contains highly distorted 13-cis RSB, indicating that the 11-cis fraction in P682 converts to 13-cis. Next, P673 establishes an equilibrium with P595 in 1.2 µs, during which RSB converts to 11-cis and then further proceeds to P560 in 48 µs and P540 in 1.0 ms while remaining 11-cis. Hence, extensive isomeric switching occurs on the early ground state potential energy surface (PES) on the hundreds of ps to µs timescale before finally settling on a metastable 11-cis photoproduct. We propose that P682 and P673 are trapped high up on the ground-state PES after passing through either of two closely located conical intersections that result in 11-cis and 13-cis RSB. Co-rotation of C11=C12 and C13=C14 bonds results in a constricted conformational landscape that allows thermal switching between 11-cis and 13-cis species of highly strained RSB chromophores. Protein relaxation may release RSB strain, allowing it to evolve to a stable 11-cis isomeric configuration in microseconds.
Collapse
Affiliation(s)
- Spyridon Kaziannis
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
- Department of Physics, University of Ioannina, IoanninaGr-45110, Greece
| | - Matthias Broser
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Ivo H. M. van Stokkum
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Jakub Dostal
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Wayne Busse
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Arno Munhoven
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - Cesar Bernardo
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Miroslav Kloz
- The Extreme Light Infrastructure ERIC, Dolní Břežany252 41, Czech Republic
| | - Peter Hegemann
- Faculty of Life Sciences, Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, BerlinD-10115, Germany
| | - John T. M. Kennis
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| |
Collapse
|
4
|
Fujisawa T, Kinoue K, Seike R, Kikukawa T, Unno M. Configurational Changes of Retinal Schiff Base during Membrane Na + Transport by a Sodium Pumping Rhodopsin. J Phys Chem Lett 2024; 15:1993-1998. [PMID: 38349321 DOI: 10.1021/acs.jpclett.3c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microbial rhodopsins are photoreceptors containing the retinal Schiff base chromophore and are ubiquitous among microorganisms. The Schiff base configuration of the chromophore, 15-anti (C═N trans) or 15-syn (C═N cis), is structurally important for their functions, such as membrane ion transport, because this configuration dictates the orientation of the positively charged NH group that interacts with substrate ions. The 15-anti/syn configuration is thus essential for elucidating the ion-transport mechanisms in microbial rhodopsins. Here, we identified the Schiff base configuration during the photoreaction of a sodium pumping rhodopsin from Indibacter alkaliphilus using Raman spectroscopy. We found that the unique configurational change from the 13-cis, 15-anti to all-trans, 15-syn form occurs between the photointermediates termed O1 and O2, which accomplish the Na+ uptake and release, respectively. This isomerization is considered to give rise to the highly irreversible O1 → O2 step that is crucial for unidirectional Na+ transport.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kouta Kinoue
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryouhei Seike
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
5
|
Du DX, Simjanoska M, Fitzpatrick AWP. Four-dimensional microED of conformational dynamics in protein microcrystals on the femto-to-microsecond timescales. J Struct Biol 2023; 215:107941. [PMID: 36773734 DOI: 10.1016/j.jsb.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
As structural determination of protein complexes approaches atomic resolution, there is an increasing focus on conformational dynamics. Here we conceptualize the combination of two techniques which have become established in recent years: microcrystal electron diffraction and ultrafast electron microscopy. We show that the extremely low dose of pulsed photoemission still enables microED due to the strength of the electron bunching from diffraction of the protein crystals. Indeed, ultrafast electron diffraction experiments on protein crystals have already been demonstrated to be effective in measuring intermolecular forces in protein microcrystals. We discuss difficulties that may arise in the acquisition and processing of data and the overall feasibility of the experiment, paying specific attention to dose and signal-to-noise ratio. In doing so, we outline a detailed workflow that may be effective in minimizing the dose on the specimen. A series of model systems that would be good candidates for initial experiments is provided.
Collapse
Affiliation(s)
- Daniel X Du
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Marija Simjanoska
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W P Fitzpatrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
6
|
Unno M, Hirose Y, Mishima M, Kikukawa T, Fujisawa T, Iwata T, Tamogami J. Spectroscopic approach for exploring structure and function of photoreceptor proteins. Biophys Physicobiol 2021; 18:127-130. [PMID: 34178563 PMCID: PMC8214923 DOI: 10.2142/biophysico.bppb-v18.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Masaki Mishima
- Department of Molecular Biophysics, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, Hachioji, Tokyo 192-0392, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tatsuya Iwata
- Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
7
|
Nakamizo Y, Fujisawa T, Kikukawa T, Okamura A, Baba H, Unno M. Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na + binding for active Na + transport. Phys Chem Chem Phys 2021; 23:2072-2079. [PMID: 33433533 DOI: 10.1039/d0cp05652a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We carried out the low-temperature Raman measurement of a sodium pump rhodopsin from Indibacter alkaliphilus (IaNaR) and examined the primary structural change for the light-driven Na+ pump. We observed that photoexcitation of IaNaR produced the distorted 13-cis retinal chromophore in the presence of Na+, while the structural distortion was significantly relaxed in the absence of Na+. This structural difference of the chromophore with/without Na+ was attributed to the Na+ binding to the protein, which alters the active site. Using the spectral sensitivity to the ion binding, we found that IaNaR had a second Na+ binding site in addition to the one already specified on the extracellular surface. To date, the Na+ binding has not been considered as a prerequisite for Na+ transport. However, this study provides insight that the protein structural change induced by the ion binding involved the formation of an R108-D250 salt bridge, which has critical importance in the active transport of Na+.
Collapse
Affiliation(s)
- Yushi Nakamizo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Natronomonas salsuginis sp. nov., a New Inhabitant of a Marine Solar Saltern. Microorganisms 2020; 8:microorganisms8040605. [PMID: 32326357 PMCID: PMC7232251 DOI: 10.3390/microorganisms8040605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022] Open
Abstract
A halophilic archaeon, strain F20-122T, was isolated from a marine saltern of Isla Bacuta (Huelva, Spain). Cells were Gram-stain-negative, aerobic, and coccoid in morphology. It grew at 25–50 °C (optimum 37 °C), pH 6.5–9.0 (optimum pH 8.0), and 10–30% (w/v) total salts (optimum 25% salts). The phylogenetic analyses based on the 16S rRNA and rpoB’ genes showed its affiliation with the genus Natronomonas and suggested its placement as a new species within this genus. The in silico DNA–DNA hybridization (DDH) and average nucleotide identity (ANI) analyses of this strain against closely related species supported its placement in a new taxon. The DNA G + C content of this isolate was 63.0 mol%. The polar lipids of strain F20-122T were phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol (PG), and phosphatidylglycerol sulfate (PGS). Traces of biphosphatidylglycerol (BPG) and other minor phospholipids and unidentified glycolipids were also present. Based on the phylogenetic, genomic, phenotypic, and chemotaxonomic characterization, we propose strain F20-122T (= CCM 8891T = CECT 9564T = JCM 33320T) as the type strain of a new species within the genus Natronomonas, with the name Natronomonas salsuginis sp. nov. Rhodopsin-like sequence analysis of strain F20-122T revealed the presence of haloarchaeal proton pumps, suggesting a light-mediated ATP synthesis for this strain and a maximum wavelength absorption in the green spectrum.
Collapse
|