1
|
Mendonça V, Soares-Lima SC, Moreira MAM. Exploring cross-tissue DNA methylation patterns: blood-brain CpGs as potential neurodegenerative disease biomarkers. Commun Biol 2024; 7:904. [PMID: 39060467 PMCID: PMC11282059 DOI: 10.1038/s42003-024-06591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The difficulty of obtaining samples from certain human tissues has led to efforts to find accessible sources to analyze molecular markers derived from DNA. In this study, we look for DNA methylation patterns in blood samples and its association with the brain methylation pattern in neurodegenerative disorders. Using data from methylation databases, we selected 18,293 CpGs presenting correlated methylation levels between blood and brain (bb-CpGs) and compare their methylation level between blood samples from patients with neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, and X Fragile Syndrome) and healthy controls. Sixty-four bb-CpGs presented significant distinct methylation levels in patients, being: nine for Alzheimer's disease, nine for Parkinson's disease, 28 for Multiple Sclerosis, and 18 for Fragile X Syndrome. Similar differences in methylation pattern for the nine Alzheimer's bb-CpGs was also observed when comparing brain tissue from patients vs. controls. The genomic regions of some of these 64 bb-CpGs are placed close to or inside genes previously associated with the respective condition. Our findings support the rationale of using blood DNA as a surrogate of brain tissue to analyze changes in CpG methylation level in patients with neurodegenerative diseases, opening the possibility for characterizing new biomarkers.
Collapse
Affiliation(s)
- Vanessa Mendonça
- Genetic Graduation Program, Genetics Deparment, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Tumoral Genetics and Virology Program, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
2
|
Kumar NH, Kluever V, Barth E, Krautwurst S, Furlan M, Pelizzola M, Marz M, Fornasiero EF. Comprehensive transcriptome analysis reveals altered mRNA splicing and post-transcriptional changes in the aged mouse brain. Nucleic Acids Res 2024; 52:2865-2885. [PMID: 38471806 PMCID: PMC11014377 DOI: 10.1093/nar/gkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
A comprehensive understanding of molecular changes during brain aging is essential to mitigate cognitive decline and delay neurodegenerative diseases. The interpretation of mRNA alterations during brain aging is influenced by the health and age of the animal cohorts studied. Here, we carefully consider these factors and provide an in-depth investigation of mRNA splicing and dynamics in the aging mouse brain, combining short- and long-read sequencing technologies with extensive bioinformatic analyses. Our findings encompass a spectrum of age-related changes, including differences in isoform usage, decreased mRNA dynamics and a module showing increased expression of neuronal genes. Notably, our results indicate a reduced abundance of mRNA isoforms leading to nonsense-mediated RNA decay and suggest a regulatory role for RNA-binding proteins, indicating that their regulation may be altered leading to the reshaping of the aged brain transcriptome. Collectively, our study highlights the importance of studying mRNA splicing events during brain aging.
Collapse
Affiliation(s)
- Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Emanuel Barth
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Bioinformatics Core Facility, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Age Research, FLI, Beutenbergstraße 11, Jena 07743, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstraße 4, Leipzig 04103, Germany
- Michael Stifel Center Jena, Friedrich Schiller University, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Fuerstengraben 1, Jena 07743, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
3
|
Chidananda AH, Khandelwal R, Jhamkhindikar A, Pawar AD, Sharma AK, Sharma Y. Secretagogin is a Ca 2+-dependent stress-responsive chaperone that may also play a role in aggregation-based proteinopathies. J Biol Chem 2022; 298:102285. [PMID: 35870554 PMCID: PMC9425029 DOI: 10.1016/j.jbc.2022.102285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Secretagogin (SCGN) is a three-domain hexa-EF-hand Ca2+-binding protein that plays a regulatory role in the release of several hormones. SCGN is expressed largely in pancreatic β-cells, certain parts of the brain, and also in neuroendocrine tissues. The expression of SCGN is altered in several diseases, such as diabetes, cancers, and neurodegenerative disorders; however, the precise associations that closely link SCGN expression to such pathophysiologies are not known. In this work, we report that SCGN is an early responder to cellular stress, and SCGN expression is temporally upregulated by oxidative stress and heat shock. We show the overexpression of SCGN efficiently prevents cells from heat shock and oxidative damage. We further demonstrate that in the presence of Ca2+, SCGN efficiently prevents the aggregation of a broad range of model proteins in vitro. Small-angle X-ray scattering (BioSAXS) studies further reveal that Ca2+ induces the conversion of a closed compact apo-SCGN conformation into an open extended holo-SCGN conformation via multistate intermediates, consistent with the augmentation of chaperone activity of SCGN. Furthermore, isothermal titration calorimetry establishes that Ca2+ enables SCGN to bind α-synuclein and insulin, two target proteins of SCGN. Altogether, our data not only demonstrate that SCGN is a Ca2+-dependent generic molecular chaperone involved in protein homeostasis with broad substrate specificity but also elucidate the origin of its altered expression in several cancers. We describe a plausible mechanism of how perturbations in Ca2+ homeostasis and/or deregulated SCGN expression would hasten the process of protein misfolding, which is a feature of many aggregation-based proteinopathies.
Collapse
Affiliation(s)
- Amrutha H Chidananda
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aditya Jhamkhindikar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India
| | - Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Indian Institute of Scientific and Education Research (IISER), Berhampur-760010, India
| | - Anand K Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India.
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Indian Institute of Scientific and Education Research (IISER), Berhampur-760010, India.
| |
Collapse
|
4
|
Bisi N, Feni L, Peqini K, Pérez-Peña H, Ongeri S, Pieraccini S, Pellegrino S. α-Synuclein: An All-Inclusive Trip Around its Structure, Influencing Factors and Applied Techniques. Front Chem 2021; 9:666585. [PMID: 34307295 PMCID: PMC8292672 DOI: 10.3389/fchem.2021.666585] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (αSyn) is a highly expressed and conserved protein, typically found in the presynaptic terminals of neurons. The misfolding and aggregation of αSyn into amyloid fibrils is a pathogenic hallmark of several neurodegenerative diseases called synucleinopathies, such as Parkinson’s disease. Since αSyn is an Intrinsically Disordered Protein, the characterization of its structure remains very challenging. Moreover, the mechanisms by which the structural conversion of monomeric αSyn into oligomers and finally into fibrils takes place is still far to be completely understood. Over the years, various studies have provided insights into the possible pathways that αSyn could follow to misfold and acquire oligomeric and fibrillar forms. In addition, it has been observed that αSyn structure can be influenced by different parameters, such as mutations in its sequence, the biological environment (e.g., lipids, endogenous small molecules and proteins), the interaction with exogenous compounds (e.g., drugs, diet components, heavy metals). Herein, we review the structural features of αSyn (wild-type and disease-mutated) that have been elucidated up to present by both experimental and computational techniques in different environmental and biological conditions. We believe that this gathering of current knowledge will further facilitate studies on αSyn, helping the planning of future experiments on the interactions of this protein with targeting molecules especially taking into consideration the environmental conditions.
Collapse
Affiliation(s)
- Nicolò Bisi
- BioCIS, CNRS, Université Paris Saclay, Châtenay-Malabry Cedex, France
| | - Lucia Feni
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| | - Kaliroi Peqini
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| | - Helena Pérez-Peña
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, Châtenay-Malabry Cedex, France
| | | | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Maqbool M, Rajvansh R, Srividya K, Hoda N. Deciphering the robustness of pyrazolo-pyridine carboxylate core structure-based compounds for inhibiting α-synuclein in transgenic C. elegans model of Synucleinopathy. Bioorg Med Chem 2020; 28:115640. [PMID: 32773095 DOI: 10.1016/j.bmc.2020.115640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD), a calamitous neurodegenerative disorder with no cure till date, is closely allied with the misfolding and aggregation of α-Synuclein (α -Syn). Inhibition of α-Syn aggregation is one of the optimistic approaches for the treatment for PD. Here, we carried out hypothesis-driven studies towards synthesising a series of pyrazolo-pyridine carboxylate containing compounds (7a-7m) targeted at reducing deleterious α-Syn aggregation. The target compounds were synthesized through multi-step organic synthesis reactions. From docking studies, compounds 7b, 7g and 7i displayed better interaction with the key residues of α-Syn with values: -6.8, -8.9 and -7.2 Kcal/mol, respectively. In vivo transgenic C. elegans model of Synucleinopathy was used to evaluate the ability of the designed and synthesized compounds to inhibit α-Syn aggregation. These lead compounds 7b, 7g and 7i displayed 1.7, 2.4 and 1.5-fold inhibition of α-Syn with respect to the control. Further, the strategy of employing pyrazolo-pyridine-based compounds worked with success and these scaffolds could be further modified and validated for betterment of endpoints associated with PD.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Drug Design and Synthesis Lab, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Roshani Rajvansh
- Laboratory of Functional Genomics and Molecular Toxicology, CSIR-Central Drug Research Institute, (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kottapalli Srividya
- Laboratory of Functional Genomics and Molecular Toxicology, CSIR-Central Drug Research Institute, (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Nasimul Hoda
- Drug Design and Synthesis Lab, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|