1
|
Chen BL, Zhang JY, Xu WJ, Yan SY, Zhu XQ. Thermodynamic and Kinetic Studies of Mononuclear Non-Heme High-Valent (FeO) 2+ Complexes. ACS OMEGA 2025; 10:3718-3728. [PMID: 39926511 PMCID: PMC11800002 DOI: 10.1021/acsomega.4c08847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
Mononuclear nonheme high-valent (FeO)2+ complexes participate in many enzymatic oxidation-reduction cycles in a living body and play a key role in organic synthesis. The concept of molecular ID (molecular identities) was proposed and applied in our previous work; it covers all thermodynamic data for compounds containing an active carbon-hydrogen bond: oxidation potential, hydride anion affinity, proton affinity, and hydrogen atom affinity. To facilitate quantitative analysis of the physical organic chemistry and molecular biology properties of (FeO)2+ complexes, the molecular identities and reaction thermodynamic platform of representative complexes were established based on the thermodynamic data, such as (N4Py)(FeO)2+ and (Bn-TPEN)(FeO)2+, and their kinetic characteristics. Finally, the findings of this study are as follows: first, the reaction between (N4Py)(FeO)2+ and hydride donors 1/2 (Scheme 1) followed a one-step hydride anion transfer mechanism. The reactions between (N4Py)(FeO)2+ and hydride donors 3 (Scheme 1) and between (Bn-TPEN)(FeO)2+ and hydride donors 1 followed the hydrogen atom-electron transfer mechanism. Second, by comparison of high-valent (RuO)2+ complexes and organic hydride acceptors, the essential laws in selecting the reaction mechanism were obtained to determine the reaction mechanism of this study. Third, the reaction between (N4Py)(FeO)2+ and 1 followed the electron-proton-electron transfer mechanism under acidic conditions.
Collapse
Affiliation(s)
| | - Jin-Ye Zhang
- The State Key Laboratory
of Elemento-Organic Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wen-Jie Xu
- The State Key Laboratory
of Elemento-Organic Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sheng-Yi Yan
- The State Key Laboratory
of Elemento-Organic Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Qing Zhu
- The State Key Laboratory
of Elemento-Organic Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Perri M, Licausi F. Thiol dioxygenases: from structures to functions. Trends Biochem Sci 2024; 49:545-556. [PMID: 38622038 DOI: 10.1016/j.tibs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.
Collapse
Affiliation(s)
- Monica Perri
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK
| | - Francesco Licausi
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Pierce BS, Schmittou AN, York NJ, Madigan RP, Nino PF, Foss FW, Lockart MM. Improved resolution of 3-mercaptopropionate dioxygenase active site provided by ENDOR spectroscopy offers insight into catalytic mechanism. J Biol Chem 2024; 300:105777. [PMID: 38395308 PMCID: PMC10966181 DOI: 10.1016/j.jbc.2024.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.
Collapse
Affiliation(s)
- Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| | - Allison N Schmittou
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan P Madigan
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Paula F Nino
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Frank W Foss
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, Homewood, Alabama, USA.
| |
Collapse
|
4
|
Nalivaiko EY, Vasseur CM, Seebeck FP. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine. Angew Chem Int Ed Engl 2024; 63:e202318445. [PMID: 38095354 DOI: 10.1002/anie.202318445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Ergothioneine is a sulfur-containing metabolite that is produced by bacteria and fungi, and is absorbed by plants and animals as a micronutrient. Ergothioneine reacts with harmful oxidants, including singlet oxygen and hydrogen peroxide, and may therefore protect cells against oxidative stress. Herein we describe two enzymes from actinobacteria that cooperate in the specific oxidative degradation of ergothioneine. The first enzyme is an iron-dependent thiol dioxygenase that produces ergothioneine sulfinic acid. A crystal structure of ergothioneine dioxygenase from Thermocatellispora tengchongensis reveals many similarities with cysteine dioxygenases, suggesting that the two enzymes share a common mechanism. The second enzyme is a metal-dependent ergothioneine sulfinic acid desulfinase that produces Nα-trimethylhistidine and SO2 . The discovery that certain actinobacteria contain the enzymatic machinery for O2 -dependent biosynthesis and O2 -dependent degradation of ergothioneine indicates that these organisms may actively manage their ergothioneine content.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Camille M Vasseur
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| |
Collapse
|
5
|
York NJ, Lockart MM, Schmittou AN, Pierce BS. Cyanide replaces substrate in obligate-ordered addition of nitric oxide to the non-heme mononuclear iron AvMDO active site. J Biol Inorg Chem 2023; 28:285-299. [PMID: 36809458 PMCID: PMC10075186 DOI: 10.1007/s00775-023-01990-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023]
Abstract
Thiol dioxygenases are a subset of non-heme mononuclear iron oxygenases that catalyze the O2-dependent oxidation of thiol-bearing substrates to yield sulfinic acid products. Cysteine dioxygenase (CDO) and 3-mercaptopropionic acid (3MPA) dioxygenase (MDO) are the most extensively characterized members of this enzyme family. As with many non-heme mononuclear iron oxidase/oxygenases, CDO and MDO exhibit an obligate-ordered addition of organic substrate before dioxygen. As this substrate-gated O2-reactivity extends to the oxygen-surrogate, nitric oxide (NO), EPR spectroscopy has long been used to interrogate the [substrate:NO:enzyme] ternary complex. In principle, these studies can be extrapolated to provide information about transient iron-oxo intermediates produced during catalytic turnover with dioxygen. In this work, we demonstrate that cyanide mimics the native thiol-substrate in ordered-addition experiments with MDO cloned from Azotobacter vinelandii (AvMDO). Following treatment of the catalytically active Fe(II)-AvMDO with excess cyanide, addition of NO yields a low-spin (S = 1/2) (CN/NO)-Fe-complex. Continuous wave and pulsed X-band EPR characterization of this complex produced in wild-type and H157N variant AvMDO reveal multiple nuclear hyperfine features diagnostic of interactions within the first- and outer-coordination sphere of the enzymatic Fe-site. Spectroscopically validated computational models indicate simultaneous coordination of two cyanide ligands replaces the bidentate (thiol and carboxylate) coordination of 3MPA allowing for NO-binding at the catalytically relevant O2-binding site. This promiscuous substrate-gated reactivity of AvMDO with NO provides an instructive counterpoint to the high substrate-specificity exhibited by mammalian CDO for L-cysteine.
Collapse
Affiliation(s)
- Nicholas J York
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, 800 Lakeshore Drive, Homewood, AL, 35229, USA
| | - Allison N Schmittou
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA
| | - Brad S Pierce
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
6
|
Hu WY, Li K, Weitz A, Wen A, Kim H, Murray JC, Cheng R, Chen B, Naowarojna N, Grinstaff MW, Elliott SJ, Chen JS, Liu P. Light-Driven Oxidative Demethylation Reaction Catalyzed by a Rieske-Type Non-heme Iron Enzyme Stc2. ACS Catal 2022; 12:14559-14570. [PMID: 37168530 PMCID: PMC10168674 DOI: 10.1021/acscatal.2c04232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rieske-type non-heme iron oxygenases/oxidases catalyze a wide range of transformations. Their applications in bioremediation or biocatalysis face two key barriers: the need of expensive NAD(P)H as a reductant and a proper reductase to mediate the electron transfer from NAD(P)H to the oxygenases. To bypass the need of both the reductase and NAD(P)H, using Rieske-type oxygenase (Stc2) catalyzed oxidative demethylation as the model system, we report Stc2 photocatalysis using eosin Y/sulfite as the photosensitizer/sacrificial reagent pair. In a flow-chemistry setting to separate the photo-reduction half-reaction and oxidation half-reaction, Stc2 photo-biocatalysis outperforms the Stc2-NAD(P)H-reductase (GbcB) system. In addition, in a few other selected Rieske enzymes (NdmA, CntA, and GbcA), and a flavin-dependent enzyme (iodotyrosine deiodinase, IYD), the eosin Y/sodium sulfite photo-reduction pair could also serve as the NAD(P)H-reductase surrogate to support catalysis, which implies the potential applicability of this photo-reduction system to other redox enzymes.
Collapse
Affiliation(s)
- Wei-Yao Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Andrew Weitz
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Aiwen Wen
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Hyomin Kim
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Jessica C. Murray
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Baixiong Chen
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Sean J. Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts02215, United States
| |
Collapse
|
7
|
Cheng R, Weitz AC, Paris J, Tang Y, Zhang J, Song H, Naowarojna N, Li K, Qiao L, Lopez J, Grinstaff MW, Zhang L, Guo Y, Elliott S, Liu P. OvoA Mtht from Methyloversatilis thermotolerans ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities. Chem Sci 2022; 13:3589-3598. [PMID: 35432880 PMCID: PMC8943887 DOI: 10.1039/d1sc05479a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/24/2022] [Indexed: 01/03/2023] Open
Abstract
Mononuclear non-heme iron enzymes are a large class of enzymes catalyzing a wide-range of reactions. In this work, we report that a non-heme iron enzyme in Methyloversatilis thermotolerans, OvoAMtht, has two different activities, as a thiol oxygenase and a sulfoxide synthase. When cysteine is presented as the only substrate, OvoAMtht is a thiol oxygenase. In the presence of both histidine and cysteine as substrates, OvoAMtht catalyzes the oxidative coupling between histidine and cysteine (a sulfoxide synthase). Additionally, we demonstrate that both substrates and the active site iron's secondary coordination shell residues exert exquisite control over the dual activities of OvoAMtht (sulfoxide synthase vs. thiol oxygenase activities). OvoAMtht is an excellent system for future detailed mechanistic investigation on how metal ligands and secondary coordination shell residues fine-tune the iron-center electronic properties to achieve different reactivities. Modulation of OvoAMtht's dual activities: sulfoxide synthase and thiol oxygenase.![]()
Collapse
Affiliation(s)
- Ronghai Cheng
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Andrew C Weitz
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Jared Paris
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 1521 USA
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 1521 USA
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
| | - Heng Song
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Kelin Li
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Lu Qiao
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Juan Lopez
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 1521 USA
| | - Sean Elliott
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| | - Pinghua Liu
- Department of Chemistry, Boston University 590 Commonwealth Ave. Boston MA 02215 USA
| |
Collapse
|
8
|
York NJ, Lockart MM, Pierce BS. Low-Spin Cyanide Complexes of 3-Mercaptopropionic Acid Dioxygenase (MDO) Reveal the Impact of Outer-Sphere SHY-Motif Residues. Inorg Chem 2021; 60:18639-18651. [PMID: 34883020 PMCID: PMC10078988 DOI: 10.1021/acs.inorgchem.1c01519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Mercaptopropionic acid (3MPA) dioxygenase (MDO) is a non-heme Fe(II)/O2-dependent oxygenase that catalyzes the oxidation of thiol-substrates to yield the corresponding sulfinic acid. Hydrogen-bonding interactions between the Fe-site and a conserved set of three outer-sphere residues (Ser-His-Tyr) play an important catalytic role in the mechanism of this enzyme. Collectively referred to as the SHY-motif, the functional role of these residues remains poorly understood. Here, catalytically inactive Fe(III)-MDO precomplexed with 3MPA was titrated with cyanide to yield a low-spin (S = 1/2) (3MPA/CN)-bound ternary complex (referred to as 1C). UV-visible and electron paramagnetic resonance (EPR) spectroscopy were used to monitor the binding of 3MPA and cyanide. Comparisons of results obtained from SHY-motif variants (H157N and Y159F) were performed to investigate specific H-bonding interactions. For the wild-type enzyme, the binding of 3MPA- and cyanide to the enzymatic Fe-site is selective and results in a homogeneous ternary complex. However, this selectivity is lost for the Y159F variant, suggesting that H-bonding interactions contributed from Tyr159 gate ligand coordination at the Fe-site. Significantly, the g-values for the low-spin ferric site are diagnostic of the directionality of Tyr159 H-bond donation. Computational models coupled with CASSCF/NEVPT2-calculated g-values were used to verify that a major shift in the central g-value (g2) displayed between wild-type and SHY variants could be attributed to the loss of Tyr159 H-bond donation to the Fe-bound cyanide. Applied to native cosubstrate, this H-bond donation provides a means to stabilize Fe-bound dioxygen and potentially explains the attenuated (∼15-fold) rate of catalytic turnover previously reported for MDO SHY-motif variants.
Collapse
Affiliation(s)
- Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| | - Molly M Lockart
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
9
|
Wang Y, Shin I, Li J, Liu A. Crystal structure of human cysteamine dioxygenase provides a structural rationale for its function as an oxygen sensor. J Biol Chem 2021; 297:101176. [PMID: 34508780 PMCID: PMC8503633 DOI: 10.1016/j.jbc.2021.101176] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/03/2023] Open
Abstract
Cysteamine dioxygenase (ADO) plays a vital role in regulating thiol metabolism and preserving oxygen homeostasis in humans by oxidizing the sulfur of cysteamine and N-terminal cysteine-containing proteins to their corresponding sulfinic acids using O2 as a cosubstrate. However, as the only thiol dioxygenase that processes both small-molecule and protein substrates, how ADO handles diverse substrates of disparate sizes to achieve various reactions is not understood. The knowledge gap is mainly due to the three-dimensional structure not being solved, as ADO cannot be directly compared with other known thiol dioxygenases. Herein, we report the first crystal structure of human ADO at a resolution of 1.78 Å with a nickel-bound metal center. Crystallization was achieved through both metal substitution and C18S/C239S double mutations. The metal center resides in a tunnel close to an entry site flanked by loops. While ADO appears to use extensive flexibility to handle substrates of different sizes, it also employs proline and proline pairs to maintain the core protein structure and to retain the residues critical for catalysis in place. This feature distinguishes ADO from thiol dioxygenases that only oxidize small-molecule substrates, possibly explaining its divergent substrate specificity. Our findings also elucidate the structural basis for ADO functioning as an oxygen sensor by modifying N-degron substrates to transduce responses to hypoxia. Thus, this work fills a gap in structure–function relationships of the thiol dioxygenase family and provides a platform for further mechanistic investigation and therapeutic intervention targeting impaired oxygen sensing.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio, Texas, USA
| | - Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio, Texas, USA
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, Texas, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, Texas, USA.
| |
Collapse
|
10
|
York NJ, Lockart MM, Sardar S, Khadka N, Shi W, Stenkamp RE, Zhang J, Kiser PD, Pierce BS. Structure of 3-mercaptopropionic acid dioxygenase with a substrate analog reveals bidentate substrate binding at the iron center. J Biol Chem 2021; 296:100492. [PMID: 33662397 PMCID: PMC8050391 DOI: 10.1016/j.jbc.2021.100492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Thiol dioxygenases are a subset of nonheme iron oxygenases that catalyze the formation of sulfinic acids from sulfhydryl-containing substrates and dioxygen. Among this class, cysteine dioxygenases (CDOs) and 3-mercaptopropionic acid dioxygenases (3MDOs) are the best characterized, and the mode of substrate binding for CDOs is well understood. However, the manner in which 3-mercaptopropionic acid (3MPA) coordinates to the nonheme iron site in 3MDO remains a matter of debate. A model for bidentate 3MPA coordination at the 3MDO Fe-site has been proposed on the basis of computational docking, whereas steady-state kinetics and EPR spectroscopic measurements suggest a thiolate-only coordination of the substrate. To address this gap in knowledge, we determined the structure of Azobacter vinelandii 3MDO (Av3MDO) in complex with the substrate analog and competitive inhibitor, 3-hydroxypropionic acid (3HPA). The structure together with DFT computational modeling demonstrates that 3HPA and 3MPA associate with iron as chelate complexes with the substrate-carboxylate group forming an additional interaction with Arg168 and the thiol bound at the same position as in CDO. A chloride ligand was bound to iron in the coordination site assigned as the O2-binding site. Supporting HYSCORE spectroscopic experiments were performed on the (3MPA/NO)-bound Av3MDO iron nitrosyl (S = 3/2) site. In combination with spectroscopic simulations and optimized DFT models, this work provides an experimentally verified model of the Av3MDO enzyme-substrate complex, effectively resolving a debate in the literature regarding the preferred substrate-binding denticity. These results elegantly explain the observed 3MDO substrate specificity, but leave unanswered questions regarding the mechanism of substrate-gated reactivity with dioxygen.
Collapse
Affiliation(s)
- Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Molly M Lockart
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Sinjinee Sardar
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Nimesh Khadka
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wuxian Shi
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Ronald E Stenkamp
- Departments of Biological Structure and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jianye Zhang
- Department of Ophthalmology, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Philip D Kiser
- Department of Ophthalmology, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA; Research Service, VA Long Beach Healthcare System, Long Beach, California, USA.
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| |
Collapse
|
11
|
Wang Y, Davis I, Chan Y, Naik SG, Griffith WP, Liu A. Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates. J Biol Chem 2020; 295:11789-11802. [PMID: 32601061 DOI: 10.1074/jbc.ra120.013915] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Cysteamine dioxygenase (ADO) has been reported to exhibit two distinct biological functions with a nonheme iron center. It catalyzes oxidation of both cysteamine in sulfur metabolism and N-terminal cysteine-containing proteins or peptides, such as regulator of G protein signaling 5 (RGS5). It thereby preserves oxygen homeostasis in a variety of physiological processes. However, little is known about its catalytic center and how it interacts with these two types of primary substrates in addition to O2 Here, using electron paramagnetic resonance (EPR), Mössbauer, and UV-visible spectroscopies, we explored the binding mode of cysteamine and RGS5 to human and mouse ADO proteins in their physiologically relevant ferrous form. This characterization revealed that in the presence of nitric oxide as a spin probe and oxygen surrogate, both the small molecule and the peptide substrates coordinate the iron center with their free thiols in a monodentate binding mode, in sharp contrast to binding behaviors observed in other thiol dioxygenases. We observed a substrate-bound B-type dinitrosyl iron center complex in ADO, suggesting the possibility of dioxygen binding to the iron ion in a side-on mode. Moreover, we observed substrate-mediated reduction of the iron center from ferric to the ferrous oxidation state. Subsequent MS analysis indicated corresponding disulfide formation of the substrates, suggesting that the presence of the substrate could reactivate ADO to defend against oxidative stress. The findings of this work contribute to the understanding of the substrate interaction in ADO and fill a gap in our knowledge of the substrate specificity of thiol dioxygenases.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, Texas, USA
| | - Ian Davis
- Department of Chemistry, University of Texas at San Antonio, Texas, USA.,Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Yan Chan
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Sunil G Naik
- Department of Chemistry, University of Texas at San Antonio, Texas, USA
| | | | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, Texas, USA .,Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|