1
|
Shabardina V, Charria PR, Saborido GB, Diaz-Mora E, Cuenda A, Ruiz-Trillo I, Sanz-Ezquerro JJ. Evolutionary analysis of p38 stress-activated kinases in unicellular relatives of animals suggests an ancestral function in osmotic stress. Open Biol 2023; 13:220314. [PMID: 36651171 PMCID: PMC9846432 DOI: 10.1098/rsob.220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
p38 kinases are key elements of the cellular stress response in animals. They mediate the cell response to a multitude of stress stimuli, from osmotic shock to inflammation and oncogenes. However, it is unknown how such diversity of function in stress evolved in this kinase subfamily. Here, we show that the p38 kinase was already present in a common ancestor of animals and fungi. Later, in animals, it diversified into three JNK kinases and four p38 kinases. Moreover, we identified a fifth p38 paralog in fishes and amphibians. Our analysis shows that each p38 paralog has specific amino acid substitutions around the hinge point, a region between the N-terminal and C-terminal protein domains. We showed that this region can be used to distinguish between individual paralogs and predict their specificity. Finally, we showed that the response to hyperosmotic stress in Capsaspora owczarzaki, a close unicellular relative of animals, follows a phosphorylation-dephosphorylation pattern typical of p38 kinases. At the same time, Capsaspora's cells upregulate the expression of GPD1 protein resembling an osmotic stress response in yeasts. Overall, our results show that the ancestral p38 stress pathway originated in the root of opisthokonts, most likely as a cell's reaction to salinity change in the environment. In animals, the pathway became more complex and incorporated more stimuli and downstream targets due to the p38 sequence evolution in the docking and substrate binding sites around the hinge region. This study improves our understanding of p38 evolution and opens new perspectives for p38 research.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Pedro Romero Charria
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Gonzalo Bercedo Saborido
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Ester Diaz-Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona,Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity, University of Barcelona, Barcelona, Spain,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Juan Jose Sanz-Ezquerro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
2
|
Schmidt SH, Weng JH, Aoto PC, Boassa D, Mathea S, Silletti S, Hu J, Wallbott M, Komives EA, Knapp S, Herberg FW, Taylor SS. Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proc Natl Acad Sci U S A 2021; 118:e2100844118. [PMID: 34088839 PMCID: PMC8201809 DOI: 10.1073/pnas.2100844118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To explore how pathogenic mutations of the multidomain leucine-rich repeat kinase 2 (LRRK2) hijack its finely tuned activation process and drive Parkinson's disease (PD), we used a multitiered approach. Most mutations mimic Rab-mediated activation by "unleashing" kinase activity, and many, like the kinase inhibitor MLi-2, trap LRRK2 onto microtubules. Here we mimic activation by simply deleting the inhibitory N-terminal domains and then characterize conformational changes induced by MLi-2 and PD mutations. After confirming that LRRK2RCKW retains full kinase activity, we used hydrogen-deuterium exchange mass spectrometry to capture breathing dynamics in the presence and absence of MLi-2. Solvent-accessible regions throughout the entire protein are reduced by MLi-2 binding. With molecular dynamics simulations, we created a dynamic portrait of LRRK2RCKW and demonstrate the consequences of kinase domain mutations. Although all domains contribute to regulating kinase activity, the kinase domain, driven by the DYGψ motif, is the allosteric hub that drives LRRK2 regulation.
Collapse
Affiliation(s)
- Sven H Schmidt
- Department of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | - Phillip C Aoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, D-60438 Frankfurt am Main, Germany
| | - Steve Silletti
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Junru Hu
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, D-60438 Frankfurt am Main, Germany
| | | | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093;
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
3
|
Chauhan RK, Sharma PK, Srivastava S. Role of signaling pathway in biological cause of Rheumatoid arthritis. Curr Drug Res Rev 2020; 13:130-139. [PMID: 33172384 DOI: 10.2174/2589977512999201109215004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
Rheumatoid Arthritis is a chronic progressive inflammatory auto-immune disease in which the immune system of the body attacks its cartilage and joints lining. It not only affects synovial joints but also many other sites including heart, blood vessels, and skins. It is more common in females than in males. The exact cause of rheumatoid arthritis is not well established but the hypothesis reported in the literature is that in the development stage of the disease, both genetics and environmental factors can play an inciting role. Along with these factors alteration in the normal physiology of enzymatic action, acts as a trigger to develop this condition. Numerous signaling pathways involved in the pathogenesis of Rheumatoid Arthritis involves activation of mitogen-activated protein kinase, kinases Janus family, P-38 Mitogen-Activated Protein Kinase, Nuclear Factor-kappa B. Interleukin-1 to play a proinflammatory cytokine that plays an important role in inflammation in RA. These are also associated with an increase in neutrophil, macrophage and lymphocytic chemotaxis, mast cell degranulation, activation, maturation and survival of T-cells and B-cells activated. These signaling pathways also show that p38α downregulation in myeloid cells exacerbates the severity of symptoms of arthritis. Thus, present review carters about the detail of different signaling pathways and their role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Rakesh Kumar Chauhan
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| | - Shikha Srivastava
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| |
Collapse
|
4
|
Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Int J Mol Sci 2020; 21:ijms21051829. [PMID: 32155847 PMCID: PMC7084655 DOI: 10.3390/ijms21051829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.
Collapse
|