1
|
Linhartova K, Falginella FL, Matl M, Sebesta M, Vácha R, Stefl R. Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7. Nat Commun 2024; 15:9163. [PMID: 39448580 PMCID: PMC11502803 DOI: 10.1038/s41467-024-53305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD. Here, we generated a systematic array of CTD variants to unravel the sequence-encoded molecular grammar underlying the LLPS of the human CTD. Using in vitro experiments and molecular dynamics simulations, we report that the aromaticity of tyrosine and cis-trans isomerization of prolines govern CTD phase-separation. The cis conformation of prolines and β-turns in the SPXX motif contribute to a more compact CTD ensemble, enhancing interactions among CTD residues. We further demonstrate that prolines and tyrosine in the CTD consensus sequence are required for phosphorylation by Cyclin-dependent kinase 7 (CDK7). Under phase-separation conditions, CDK7 associates with the surface of the CTD droplets, drastically accelerating phosphorylation and promoting the release of hyperphosphorylated CTD from the droplets. Our results highlight the importance of conformationally restricted local structures within spacer regions, separating uniformly spaced tyrosine stickers of the CTD heptads, which are required for CTD phase-separation.
Collapse
Affiliation(s)
- Katerina Linhartova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Martin Matl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Sebesta
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
| | - Richard Stefl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia.
| |
Collapse
|
2
|
Dai Z, Ben-Younis A, Vlachaki A, Raleigh D, Thalassinos K. Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry. Biophys Chem 2024; 312:107285. [PMID: 38941872 PMCID: PMC11260546 DOI: 10.1016/j.bpc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Zijie Dai
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Anna Vlachaki
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Daniel Raleigh
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States.
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
3
|
Yang T, Filippov I, Manathunga L, Baghai A, Maréchal A, Raleigh DP, Zhyvoloup A. On the importance of being amidated: Analysis of the role of the conserved C-terminal amide of amylin in amyloid formation and cytotoxicity. Biophys Chem 2024; 307:107168. [PMID: 38367541 PMCID: PMC11223093 DOI: 10.1016/j.bpc.2023.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 02/19/2024]
Abstract
The polypeptide hormone Amylin (also known as islet amyloid polypeptide) plays a role in regulation of glucose metabolism, but forms pancreatic islet amyloid deposits in type 2 diabetes. The process of islet amyloid formation contributes to β-cell dysfunction and the development of the disease. Amylin is produced as a pro-from and undergoes processing prior to secretion. The mature hormone contains an amidated C-terminus. Analysis of an alignment of vertebrate amylin sequences reveals that the processing signal for amidation is strictly conserved. Furthermore, the enzyme responsible for C-terminal amidation is found in all of these organisms. Comparison of the physiologically relevant amidated form to a variant with a free C-terminus (Amylin-COO-) shows that replacement of the C-terminal amide with a carboxylate slows, but does not prevent amyloid formation. Pre-fibrillar species produced by both variants are toxic to cultured β-cells, although hAmylin-COO- is moderately less so. Amyloid fibrils produced by either peptide are not toxic. Prior work (ACS Pharmacol. Translational. Sci. 1, 132-49 (2018)) shows that Amylin- COO- exhibits a 58-fold reduction in activation of the Amylin1 receptor and 20-fold reduction in activation of the Amylin3 receptor. Thus, hAmylin-COO- exhibits significant toxicity, but significantly reduced activity and offers a reagent for studies which aim to decouple hAmylin's toxic effects from its activity. The different behaviours of free and C-terminal amidated Amylin should be considered when designing systems to produce the polypeptide recombinantly.
Collapse
Affiliation(s)
- Tangweina Yang
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ivan Filippov
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Lakshan Manathunga
- Laufer Center for Quantitative Biology, Stony Brook University, Nicolls Road, Stony Brook, NY 11790, United States; Department of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, NY 11790, United States
| | - Aria Baghai
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Amandine Maréchal
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Daniel P Raleigh
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; Laufer Center for Quantitative Biology, Stony Brook University, Nicolls Road, Stony Brook, NY 11790, United States; Department of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, NY 11790, United States.
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
Sanders HM, Chalyavi F, Fields CR, Kostelic MM, Li MH, Raleigh DP, Zanni MT, Marty MT. Interspecies Variation Affects Islet Amyloid Polypeptide Membrane Binding. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:986-990. [PMID: 37126782 PMCID: PMC10330443 DOI: 10.1021/jasms.3c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The aggregation of islet amyloid polypeptide (IAPP) is associated with β-cell dysfunction in type 2 diabetes (T2D) in humans. One possible mechanism of toxicity is the interaction of IAPP oligomers with lipid membranes to disrupt the bilayer integrity and/or homeostasis of the cell. Amino acid sequence variations of IAPPs between species can greatly decrease their propensity for aggregation. For example, human IAPP is toxic to β-cells, but rat and pig IAPP are not. However, it is not clear how these differences affect membrane association. Using native mass spectrometry with lipid nanodiscs, we explored the differences in the association of human, rat, and pig IAPP with lipid bilayers. We discovered that human and rat IAPP bound nanodiscs with anionic dipalmitoyl-phosphatidylglycerol (DPPG) lipids, but pig IAPP did not. Furthermore, human and rat IAPP interacted differently with the membrane. Human IAPP show potential tetramer complexes, but rat IAPP associated with the membrane sequentially. Thus, overall IAPP-bilayer interactions are not necessarily related to disease, but small differences in oligomeric behavior at the membrane may instead play a role.
Collapse
Affiliation(s)
- Henry M. Sanders
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Farzaneh Chalyavi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caitlyn R. Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marius M. Kostelic
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Ming-Hao Li
- Department of Chemistry and Laufer Center for Quantitative Biology, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, USA
| | - Daniel P. Raleigh
- Department of Chemistry and Laufer Center for Quantitative Biology, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Understanding the mechanism of amylin aggregation: From identifying crucial segments to tracing dominant sequential events to modeling potential aggregation suppressors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140866. [PMID: 36272537 DOI: 10.1016/j.bbapap.2022.140866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
One of the most abundant, prevailing, and life-threatening human diseases that are currently baffling the scientific community is type 2 diabetes (T2D). The self-association of human amylin has been implicated in the pathogenesis of T2D, though with an inconclusive understanding of the mechanism. Hence, we focused on the characterization of the conformational ensembles of all the species that are believed to define the structural polymorphism of the aggregation process - the functional monomeric, the initially self-associated oligomeric, and the structured protofibril - by employing near-equilibrium, non-equilibrium, and equilibrium atomistic simulations on the sporadic, two familial variants (S20G and G33R), and their proline-substituted forms (S20P and G33P). The dynamic near-equilibrium assays hint toward - the abundance of helical conformation in the monomeric state, the retainment of the helicity in the initial self-associated oligomeric phase pointing toward the existence of the helix-helix association mechanism, the difference in preference of specific segments to have definite secondary structural features, the phase-dependent variability in the dominance of specific segments and mutation sites, and the simultaneous presence of generic and unique features among various sequences. Furthermore, the non-equilibrium pulling assays exemplify a generic sequential unzipping mechanism of the protofibrils, however, the sequence-dependent uniqueness comes from the difference in location and magnitude of the control of a specific terminus. Importantly, the equilibrium thermodynamic assays efficiently rank order the potential of aggregability among sequences and consequently suggests the probability of designing effective aggregation suppressors against sporadic and familial amylin variants incorporating proline as the mutation.
Collapse
|
6
|
Miller ME, Li MH, Baghai A, Peetz VH, Zhyvoloup A, Raleigh DP. Analysis of Sheep and Goat IAPP Provides Insight into IAPP Amyloidogenicity and Cytotoxicity. Biochemistry 2022; 61:2531-2545. [PMID: 36286531 PMCID: PMC11132794 DOI: 10.1021/acs.biochem.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) plays a role in glucose regulation but forms pancreatic amyloid deposits in type 2 diabetes, and that process contributes to β-cell dysfunction. Not all species develop diabetes, and not all secrete an IAPP that is amyloidogenic in vitro under normal conditions, a perfect correlation currently exists between both. Studies of IAPPs from such organisms can provide clues about the high amyloidogenicity of hIAPP and can inform the design of soluble analogues of hIAPP. Sheep and goat IAPP are among the most divergent from hIAPP, with 13 and 11 substitutions, respectively, including an unusual Tyr to His substitution at the C-terminus. The properties of sheep and goat IAPP were examined in solution and in the presence of anionic vesicles, resulting in no observed amyloid formation, even at increased concentrations. Furthermore, both peptides are considerably less toxic to cultured β-cells than hIAPP. The effect of the Y37H replacements was studied in the context of hIAPP, as was a Y37R substitution. Buffer- and salt-dependent effects were observed. There was little impact on the time to form amyloid in phosphate-buffered saline; however, a significant deceleration was observed in Tris buffer, and amyloid formation was slower in the absence of added salt. The Y37H substitution had little impact on toxicity, while the Y37R replacement led to a 30% decrease in toxicity compared with that of hIAPP. The implications for the amyloidogenicity of hIAPP and the design of soluble analogues of the human peptide are discussed.
Collapse
Affiliation(s)
- Matthew E.T. Miller
- Department of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, New York 11790, United States
| | - Ming-Hao Li
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Aria Baghai
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Vincent H. Peetz
- Department of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, New York 11790, United States
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, New York 11790, United States
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11790, United States
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Manathunga L, Zhyvoloup A, Baghai A, Raleigh DP. Differential Effects of Aromatic Residues on Amyloid Formation and Cytotoxicity of Human IAPP. Biochemistry 2022; 61:2334-2343. [PMID: 36215164 PMCID: PMC11132793 DOI: 10.1021/acs.biochem.2c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Islet amyloid polypeptide (IAPP) is a 37-residue polypeptide hormone secreted by the pancreatic β-cells. IAPP plays a role in glycemic regulation, but in the pre-type-2 diabetic state, it aggregates to form an islet amyloid. The process of islet amyloid formation contributes to β-cell dysfunction and disease progression. The features of the IAPP sequence that modulate amyloid formation are still not understood. Human IAPP contains three aromatic residues, F15, F23, and Y37. F15 and Y37 are highly conserved, while F23 is more commonly a Leu or Ile in other species. The role of the aromatic residues in modulating the time course of amyloid formation and the cytotoxicity was examined using aromatic to Leu mutations. All three single and double mutants and the triple mutant were studied. F23 plays a dominant role in both amyloid formation and toxicity. An F15L mutant accelerated amyloid formation, a Y37L mutant had little effect, while an F23L replacement slowed amyloid formation by a factor of 2.6. Double mutants, which contained an F23L replacement, had a larger effect than those that did not, and there are non-additive effects between pairs of aromatic residues. F23 also plays a key role in toxicity. Single or multiple mutants that contain the F23L replacement were noticeably less toxic than the wild-type or mutants which did not include the F23L substitution. In contrast, the F15L mutant was more toxic than the wild-type one. The implications for IAPP amyloid formation and for the design of non-aggregating analogues of IAPP are discussed.
Collapse
Affiliation(s)
- Lakshan Manathunga
- Deartment of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, New York 11790, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Aria Baghai
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Daniel P. Raleigh
- Deartment of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, New York 11790, United States
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
8
|
Fortier M, Côté-Cyr M, Nguyen V, Babych M, Nguyen PT, Gaudreault R, Bourgault S. Contribution of the 12–17 hydrophobic region of islet amyloid polypeptide in self-assembly and cytotoxicity. Front Mol Biosci 2022; 9:1017336. [PMID: 36262476 PMCID: PMC9573943 DOI: 10.3389/fmolb.2022.1017336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The islet amyloid polypeptide (IAPP) is a 37-residue aggregation-prone peptide hormone whose deposition as insoluble fibrils in the islets of Langerhans is associated with type II diabetes. Therapeutic interventions targeting IAPP amyloidogenesis, which contributes to pancreatic β-cell degeneration, remain elusive owing to the lack of understanding of the self-assembly mechanisms and of the quaternary proteospecies mediating toxicity. While countless studies have investigated the contributions of the 20–29 amyloidogenic core in self-assembly, IAPP central region, i.e. positions 11 to 19, has been less studied, notwithstanding its potential key role in oligomerization. In this context, the present study aimed at investigating the physicochemical and conformational properties driving IAPP self-assembly and associated cytotoxicity. Computational tools and all-atom molecular dynamics simulation suggested that the hydrophobic 12–17 segment promotes IAPP self-recognition and aggregation. Alanine scanning revealed that the hydrophobic side chains of Leu12, Phe15 and Val17 are critical for amyloid fibril formation. Destabilization of the α-helical folding by Pro substitution enhanced self-assembly when the pyrrolidine ring was successively introduced at positions Ala13, Asn14 and Phe15, in comparison to respective Ala-substituted counterparts. Modulating the peptide backbone flexibility at position Leu16 through successive incorporation of Pro, Gly and α-methylalanine, inhibited amyloid formation and reduced cytotoxicity, while the isobutyl side chain of Leu16 was not critical for self-assembly and IAPP-mediated toxicity. These results highlight the importance of the 12–17 hydrophobic region of IAPP for self-recognition, ultimately supporting the development of therapeutic approaches to prevent oligomerization and/or fibrillization.
Collapse
Affiliation(s)
- Mathilde Fortier
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Vy Nguyen
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Margaryta Babych
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Roger Gaudreault
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Department of Physics, Université de Montréal, Succursale Centre-ville, Montreal, QC, Canada
- *Correspondence: Roger Gaudreault, ; Steve Bourgault,
| | - Steve Bourgault
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
- *Correspondence: Roger Gaudreault, ; Steve Bourgault,
| |
Collapse
|
9
|
Dharmaraj GL, Arigo FD, Young KA, Martins R, Mancera RL, Bharadwaj P. Novel Amylin Analogues Reduce Amyloid-β Cross-Seeding Aggregation and Neurotoxicity. J Alzheimers Dis 2022; 87:373-390. [PMID: 35275530 DOI: 10.3233/jad-215339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Type 2 diabetes related human islet amyloid polypeptide (hIAPP) plays a dual role in Alzheimer's disease (AD). hIAPP has neuroprotective effects in AD mouse models whereas, high hIAPP concentrations can promote co-aggregation with amyloid-β (Aβ) to promote neurodegeneration. In fact, both low and high plasma hIAPP concentration has been associated with AD. Therefore, non-aggregating hIAPP analogues have garnered interest as a treatment for AD. The aromatic amino acids F23 and I26 in hIAPP have been identified as the key residues involved in self-aggregation and Aβ cross-seeding. OBJECTIVE Three novel IAPP analogues with single and double alanine mutations (A1 = F23, A2 = I26, and A3 = F23 + I26) were assessed for their ability to aggregate, modulate Aβ oligomer formation, and alter neurotoxicity. METHODS A range of biophysical methods including Thioflavin-T, gel electrophoresis, photo-crosslinking, circular dichroism combined with cell viability assays were utilized to assess protein aggregation and toxicity. RESULTS All IAPP analogues showed significantly less self-aggregation than hIAPP. Co-aggregated Aβ 42-A2 and A3 also showed reduced aggregation compared to Aβ 42-hIAPP mixtures. Self- and co-oligomerized A1, A2, and A3 exhibited random coil conformations with reduced beta sheet content compared to hIAPP and Aβ 42-hIAPP aggregates. A1 was toxic at high concentrations compared to A2 and A3. However, co-aggregated Aβ 42-A1, A2, or A3 showed reduced neurotoxicity compared to Aβ 42, hIAPP, and Aβ 42-hIAPP aggregates. CONCLUSION These findings confirm that hIAPP analogues with non-aromatic residues at positions 23 and 26 have reduced self-aggregation and the ability to neutralize Aβ 42 toxicity. This warrants further characterization of their protective effects in pre-clinical AD models.
Collapse
Affiliation(s)
| | - Fraulein Denise Arigo
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| | - Kimberly A Young
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| | - Ralph Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Perth WA, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Perth WA, Australia.,Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth WA, Australia
| |
Collapse
|
10
|
Zhao L, Wang S, Hu Q, Jia H, Xin Y, Luo L, Meng F. Conformation-reconstructed multivalent antibody mimic for amplified mitigation of human islet amyloid polypeptide amyloidogenesis. NANOSCALE 2022; 14:2802-2815. [PMID: 35133388 DOI: 10.1039/d1nr08090c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (IAPP) into β-sheet-enriched amyloid fibrils is linked to type 2 diabetes. Antibodies are potent inhibitors of IAPP amyloidogenesis, but their preparation is usually complicated and expensive. Here we have created a multivalent antibody mimic SPEPS@Au through conformational engineering of the complementary-determining regions (CDRs) of antibodies on gold nanoparticles (AuNPs). By immobilizing both terminals of an IAPP-recognizing CDR loop (PEP) on the surface of AuNPs, the active conformation of PEP can simply recur on the gold-based antibody mimic, significantly enhancing the binding affinity between PEP and IAPP. SPEPS@Au mitigated amyloidogenesis of IAPP at low sub-stoichiometric concentrations, even after IAPP started aggregating, and dramatically reduced the amyloidogenesis-induced toxicity and ROS production both in vitro and in vivo. The conformation-reconstructed multivalent antibody mimic not only renders a facile strategy to approach potent amyloidogenesis inhibitors, but also provides new perspectives to exploit NP-based substitutes for antibodies in various applications.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Eldrid C, Ben-Younis A, Ujma J, Britt H, Cragnolini T, Kalfas S, Cooper-Shepherd D, Tomczyk N, Giles K, Morris M, Akter R, Raleigh D, Thalassinos K. Cyclic Ion Mobility-Collision Activation Experiments Elucidate Protein Behavior in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1545-1552. [PMID: 34006100 PMCID: PMC8172447 DOI: 10.1021/jasms.1c00018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ion mobility coupled to mass spectrometry (IM-MS) is widely used to study protein dynamics and structure in the gas phase. Increasing the energy with which the protein ions are introduced to the IM cell can induce them to unfold, providing information on the comparative energetics of unfolding between different proteoforms. Recently, a high-resolution cyclic IM-mass spectrometer (cIM-MS) was introduced, allowing multiple, consecutive tandem IM experiments (IMn) to be carried out. We describe a tandem IM technique for defining detailed protein unfolding pathways and the dynamics of disordered proteins. The method involves multiple rounds of IM separation and collision activation (CA): IM-CA-IM and CA-IM-CA-IM. Here, we explore its application to studies of a model protein, cytochrome C, and dimeric human islet amyloid polypeptide (hIAPP), a cytotoxic and amyloidogenic peptide involved in type II diabetes. In agreement with prior work using single stage IM-MS, several unfolding events are observed for cytochrome C. IMn-MS experiments also show evidence of interconversion between compact and extended structures. IMn-MS data for hIAPP shows interconversion prior to dissociation, suggesting that the certain conformations have low energy barriers between them and transition between compact and extended forms.
Collapse
Affiliation(s)
- Charles Eldrid
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Jakub Ujma
- Waters
Corporation, Wilmslow SK9 4AX, U.K.
| | - Hannah Britt
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Tristan Cragnolini
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K.
| | - Symeon Kalfas
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | | | | | | | | | - Rehana Akter
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Daniel Raleigh
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K.
| |
Collapse
|