1
|
Kulkarni S, Kumar A, Pandey A, Soman S, Subramanian S, Mutalik S. Exploring 99mTc-Labeled Iron-Binding Glycoprotein Nanoparticles as a Potential Nanoplatform for Sentinel Lymph Node Imaging: Development, Characterization, and Radiolabeling Studies. ACS OMEGA 2024; 9:42410-42422. [PMID: 39431106 PMCID: PMC11483396 DOI: 10.1021/acsomega.4c05991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
Lactoferrin, an iron binding glycoprotein-based nanoparticle, has emerged as a promising platform for drug delivery and imaging. This study presents the potential use of the protein nanocarrier in tracking sentinel lymph nodes for cancer staging. Lactoferrin nanoparticles (LF-NPs) were synthesized using a thermal treatment process and optimized to obtain 60-70 nm particle size with PDI less than 0.2. The NPs were characterized microscopically and spectroscopically, ensuring a comprehensive understanding of their physicochemical properties. The LF-NPs were found to be stable in different pH conditions. Their biocompatibility was confirmed through cytotoxicity assessments on RAW 264.7 cells, and hemolysis assay and in vivo toxicity study reveal their safe profile. Additionally, LF-NPs were successfully radiolabeled with technetium-99m (>90% labeling yield). Cell uptake studies with RAW 264.7 exhibited an uptake of ∼6%. Biodistribution studies in Wistar rats shed light on their in vivo behavior and suitability for targeted drug delivery systems. These findings collectively emphasize the multifaceted utility of LF-NPs, positioning them as a promising platform for diverse biomedical innovations.
Collapse
Affiliation(s)
- Sanjay Kulkarni
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anuj Kumar
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra State 400085, India
| | - Abhijeet Pandey
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Global
Drug Development/Technical Research and Development, Novartis Healthcare Pvt. Ltd., Genome Valley, Hyderabad 500081, India
| | - Soji Soman
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra State 400085, India
| | - Srinivas Mutalik
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
2
|
Kulkarni S, Pandey A, Soman S, Nannuri SH, Kumar A, Bhavsar D, George SD, Subramanian S, Mutalik S. Efficient internalization of nano architectured 177Lu-hyaluronic acid@ zirconium-based metal-organic framework for the treatment of neuroblastoma: Unravelling toxicity, stability, radiolabelling and bio-distribution. Int J Biol Macromol 2024; 278:134381. [PMID: 39127292 DOI: 10.1016/j.ijbiomac.2024.134381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Zirconium-based metal-organic frameworks (UiO-66) have gained considerable attention owing to their versatile application. In the present research, UiO-66 was synthesized via a defect engineering approach, and its toxicity profile was explored. The synthesized nanomaterial was extensively characterized via spectroscopic methods such as FTIR and Raman spectroscopy, which confirmed the formation of the framework. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to determine the crystallinity, shape and size of the nanoformulations. Thermal gravimetric analysis, 1H NMR spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis were used to identify the differences between pristine and defective UiO-66. Furthermore, the synthesized MOF was exposed to various pH conditions, serum protein and DMEM. Drug loading and release studies were evaluated using 5-fluorouracil as a model anticancer drug. The synthesized MOFs were modified with hyaluronic acid via mussel-inspired polymerization to increase their uptake and stability. More importantly, the toxicity of the nanoformulation was investigated via various toxicity studies, such as hemolysis assays and cell viability assays, and was further supported by in vivo acute and subacute toxicity data obtained from Wistar rats. Radiolabelling and bio-distribution studies were also performed using 177Lu to explore the bio-distribution profile of UiO-66.
Collapse
Affiliation(s)
- Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Formulation Research and Development, Global Drug Development/Technical Research and Development, Novartis Healthcare Pvt. Ltd., Genome Valley, Hyderabad 500101, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shivanand H Nannuri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Dhaval Bhavsar
- Drug Delivery Research Laboratory, Centre of Relevance and Excellence in NDDS, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Sajan Daniel George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Zhao R, Xia Z, Ke M, Lv J, Zhong H, He Y, Gu D, Liu Y, Zeng G, Zhu L, Alexoff D, Kung HF, Wang X, Sun T. Determining the optimal pharmacokinetic modelling and simplified quantification method of [ 18F]AlF-P16-093 for patients with primary prostate cancer (PPCa). Eur J Nucl Med Mol Imaging 2024; 51:2124-2133. [PMID: 38285206 DOI: 10.1007/s00259-024-06624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE This paper discusses the optimization of pharmacokinetic modelling and alternate simplified quantification method for [18F]AlF-P16-093, a novel tracer for in vivo imaging of prostate cancer. METHODS Dynamic PET/CT scans were conducted on eight primary prostate cancer patients, followed by a whole-body scan at 60 min post-injection. Time-activity curves (TACs) were obtained by drawing volumes of interest for primary prostatic and metastatic lesions. Optimal kinetic modelling involved evaluating three compartmental models (1T2K, 2T3K, and 2T4K) accounting for fractional blood volume (Vb). The simplified quantification method was then determined based on the correlation between the static uptake measure and total distribution volume (Vt) obtained from the optimal pharmacokinetic analysis. RESULTS In total, 17 intraprostatic lesions, 10 lymph nodes, and 36 osseous metastases were evaluated. Visually, the contrast of the tumor increased and showed the steepest incline within the first few minutes, whereas background activity decreased over time. Full pharmacokinetic analysis revealed that a reversible two-compartmental (2T4K) model is the preferred kinetic model for the given tracer. The kinetic parameters K1, k3, Vb, and Vt were all significantly higher in lesions when compared with normal tissue (P < 0.01). Several simplified protocols were tested for approximating comprehensive dynamic quantification in tumors, with image-based SURmean (the ratio of tumor SUVmean to blood SUVmean) within the 28-34 min window found to be sufficient for approximating the total distribution Vt values (R2 = 0.949, P < 0.01). Both Vt and SURmean correlated significantly with the total serum prostate-specific antigen (tPSA) levels (P < 0.01). CONCLUSIONS This study introduced an optimized pharmacokinetic modelling approach and a simplified acquisition method for [18F]AlF-P16-093, a novel PSMA-targeted radioligand, highlighting the feasibility of utilizing one static PET imaging (between 30 and 60 min) for the diagnosis of prostate cancer. Note that the image-derived input function in this study may not reflect the true corrected plasma input function, therefore the interpretation of the associated kinetic parameter estimates should be done with caution.
Collapse
Affiliation(s)
- Ruiyue Zhao
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zeheng Xia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Miao Ke
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jie Lv
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huizhen Zhong
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yulu He
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Lin Zhu
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - David Alexoff
- Five Eleven Pharma Inc., 3700 Market St., Philadelphia, PA, 19104, USA
| | - Hank F Kung
- Five Eleven Pharma Inc., 3700 Market St., Philadelphia, PA, 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xinlu Wang
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Zhao R, Ke M, Lv J, Liu S, Liu Y, Zhang J, Xu L, Gu D, Li M, Cai C, Liu Y, Zeng G, Alexoff D, Ploessl K, Zhu L, Kung HF, Wang X. First-in-human study of PSMA-targeting agent, [ 18F]AlF-P16-093: dosimetry and initial evaluation in prostate cancer patients. Eur J Nucl Med Mol Imaging 2024; 51:1753-1762. [PMID: 38212531 DOI: 10.1007/s00259-024-06596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
PURPOSE This is a first-in-human study to evaluate the radiation dosimetry of a new prostate-specific membrane antigen (PSMA)-targeted radiopharmaceutical, [18F]AlF-P16-093, and also initial investigation of its ability to detect PSMA-positive tumors using PET scans in a cohort of prostate cancer (PCa) patients. METHODS The [18F]AlF-P16-093 was automatically synthesized with a GE TRACERlab. A total of 23 patients with histopathologically proven PCa were prospectively enrolled. Dosimetry and biodistribution study investigations were carried out on a subset of six (6) PCa patients, involving multiple time-point scanning. The mean absorbed doses were estimated with PMOD and OLINDA software. RESULTS [18F]AlF-P16-093 was successfully synthesized, and radiochemical purity was > 95%, and average labeling yield was 36.5 ± 8.3% (decay correction, n = 12). The highest tracer uptake was observed in the kidneys, spleen, and liver, contributing to an effective dose of 16.8 ± 1.3 μSv/MBq, which was ~ 30% lower than that of [68Ga]Ga-P16-093. All subjects tolerated the PET examination well, and no reportable side-effects were observed. The PSMA-positive tumors displayed rapid uptake, and they were all detectable within 10 min, and no additional lesions were observed in the following multi-time points scanning. Each patient had at least one detectable tumor lesion, and a total of 356 tumor lesions were observed, including intraprostatic, lymph node metastases, bone metastases, and other soft tissue metastases. CONCLUSIONS We report herein a streamlined method for high yield synthesis of [18F]AlF-P16-093. Preliminary study in PCa patients has demonstrated its safety and acceptable radiation dosimetry. The initial diagnostic study indicated that [18F]AlF-P16-093 PET/CT is efficacious and potentially useful for a widespread application in the diagnosis of PCa patients.
Collapse
Affiliation(s)
- Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Miao Ke
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jie Lv
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuheng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Lifu Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Mingzhao Li
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Chao Cai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - David Alexoff
- Five Eleven Pharma Inc, 3700 Market St, Philadelphia, PA, 19104, USA
| | - Karl Ploessl
- Five Eleven Pharma Inc, 3700 Market St, Philadelphia, PA, 19104, USA
| | - Lin Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Hank F Kung
- Five Eleven Pharma Inc, 3700 Market St, Philadelphia, PA, 19104, USA.
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
5
|
Alexoff D, Choi SR, Ploessl K, Kim D, Zhao R, Zhu L, Kung H. Optimization and scale up of production of the PSMA imaging agent [ 18F]AlF-P16-093 on a custom automated radiosynthesis platform. EJNMMI Radiopharm Chem 2024; 9:15. [PMID: 38393404 PMCID: PMC10891009 DOI: 10.1186/s41181-024-00247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Recent advancements in positron emission tomograph (PET) using prostate specific membrane antigen (PSMA)-targeted radiopharmaceuticals have changed the standard of care for prostate cancer patients by providing more accurate information during staging of primary and recurrent disease. [68Ga]Ga-P16-093 is a new PSMA-PET radiopharmaceutical that demonstrated superior imaging performance in recent head-to-head studies with [68Ga]Ga-PSMA-11. To improve the availability of this new PSMA PET imaging agent, [18F]AlF-P16-093 was developed. The 18F-analog [18F]AlF-P16-093 has been synthesized manually at low activity levels using [18F]AlF2+ and validated in pre-clinical models. This work reports the optimization of the production of > 15 GBq of [18F]AlF-P16-093 using a custom automated synthesis platform. RESULTS The sensitivity of the radiochemical yield of [18F]AlF-P16-093 to reaction parameters of time, temperature and reagent amounts was investigated using a custom automated system. The automated system is a low-cost, cassette-based system designed for 1-pot syntheses with flow-controlled solid phase extraction (SPE) workup and is based on the Raspberry Pi Zero 2 microcomputer/Python3 ecosystem. The optimized none-decay-corrected yield was 52 ± 4% (N = 3; 17.5 ± 2.2 GBq) with a molar activity of 109 ± 14 GBq/µmole and a radiochemical purity of 98.6 ± 0.6%. Run time was 30 min. A two-step sequence was used: SPE-purified [18F]F- was reacted with 80 nmoles of freeze-dried AlCl3·6H2O at 65 °C for 5 min followed by reaction with 160 nmoles of P16-093 ligand at 40 °C for 4 min in a 1:1 mixture of ethanol:0.5 M pH 4.5 NaOAc buffer. The mixture was purified by SPE (> 97% recovery). The final product formulation (5 mM pH 7 phosphate buffer with saline) exhibited a rate of decline in radiochemical purity of ~ 1.4%/h which was slowed to ~ 0.4%/h when stored at 4 °C. CONCLUSION The optimized method using a custom automated system enabled the efficient (> 50% none-decay-corrected yield) production of [18F]AlF-P16-093 with high radiochemical purity (> 95%). The method and automation system are simple and robust, facilitating further clinical studies with [18F]AlF-P16-093.
Collapse
Affiliation(s)
- David Alexoff
- Five Eleven Pharma Inc., Philadelphia, PA, 19104, USA.
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, PA, 19104, USA
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, PA, 19104, USA
| | - Dohyun Kim
- Isotope Research and Production Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Lin Zhu
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Hank Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
San C, Hosten B, Vignal N, Beddek M, Pillet M, Sarda-Mantel L, Port M, Dioury F. Optimization of a 1,4,7-Triazacyclononane-1,4-diacetic acid (NODA) Derivative Radiofluorination by Al 18 F Complexation Using a Design of Experiments Approach. Chemistry 2023; 29:e202302745. [PMID: 37743346 DOI: 10.1002/chem.202302745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Fluorine-18 (18 F) is the most favorable positron emitter for radiolabeling Positron Emission Tomography (PET) probes. However, conventional 18 F labeling through covalent C-F bond formation is challenging, involving multiple steps and stringent conditions unsuitable for sensitive biomolecular probes whose integrity may be altered. Over the past decade, an elegant new approach has been developed involving the coordination of an aluminum fluoride {Al18 F} species in aqueous media at a late-stage of the synthetic process. The objective of this study was to implement this method and to optimize radiolabeling efficiency using a Design of Experiments (DoE). To assess the impact of various experimental parameters on {Al18 F} incorporation, a pentadentate chelating agent NODA-MP-C4 was prepared as a model compound. This model carried a thiourea function present in the final conjugates resulting from the grafting of the chelating agent onto the probe. The formation of the radioactive complex Al18 F-NODA-MP-C4 was studied to achieve the highest radiochemical conversion. A complementary "cold" series study using the natural isotope 19 F was also conducted to guide the radiochemical operating conditions. Ultimately, Al18 F-NODA-MP-C4 was obtained with a reproducible and satisfactory radiochemical conversion of 79±3.5 % (n=5).
Collapse
Affiliation(s)
- Carine San
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003, Paris, France
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - Benoît Hosten
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, 1 avenue Claude Vellefaux, 75010, Paris, France
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Nicolas Vignal
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - Meriem Beddek
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - Maurice Pillet
- Laboratoire SYMME, EA 4144, Université Savoie Mont-Blanc, 7 chemin de Bellevue, 74940, Annecy, France
| | - Laure Sarda-Mantel
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - Marc Port
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003, Paris, France
| | - Fabienne Dioury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003, Paris, France
| |
Collapse
|
7
|
Yang X, Nao SC, Lin C, Kong L, Wang J, Ko CN, Liu J, Ma DL, Leung CH, Wang W. A cell-impermeable luminogenic probe for near-infrared imaging of prostate-specific membrane antigen in prostate cancer microenvironments. Eur J Med Chem 2023; 259:115659. [PMID: 37499288 DOI: 10.1016/j.ejmech.2023.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Prostate-specific membrane antigen (PSMA) imaging probes are a promising tool for the diagnosis and image-guided surgery of prostate cancer (PCa). However, PSMA-specific luminescence probes for PCa detection and heterogeneity studies with high imaging contrast are lacking. Here, we report the first near-infrared (NIR) iridium(III) complex for the wash-free and specific imaging of PSMA in PCa cells and spheroids. The conjugation of a PSMA inhibitor, Lys-urea-Glu, to an iridium(III) complex synergizes the PSMA-specific affinity and biocompatibility of the inhibitor with the desirable photophysical properties of the iridium(III) complex, including NIR emission (670 nm), high photostability and a large Stokes shift. The cellular impermeability of the probe along with its strong binding affinity to PSMA enhances its specificity for PSMA, enabling the washing-free luminescent imaging of membrane PSMA with lower cytotoxicity. The probe was successfully applied for selectively visualizing PSMA-expressing cells and for the imaging of PSMA in a multicellular PCa model with good imaging penetration, indicating its potential use in complicated and heterogeneous tumor microenvironments. Furthermore, the probe showed good imaging performance in the PCa-bearing tumor mice via targeting PSMA in vivo. This work provides a novel strategy for the development of highly sensitive and specific NIR probes for PSMA in biological systems in vitro, which is of great significance for the precise diagnosis of PCa and for elucidating PCa heterogeneity.
Collapse
Affiliation(s)
- Xifang Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Chuankai Lin
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Lingtan Kong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Jing Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jinbiao Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau.
| | - Wanhe Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China.
| |
Collapse
|
8
|
Hong H, Zha Z, Zhao R, Luo Y, Jin W, Li L, Wang R, Yan L, Wang H, Ploessl K, Qiao J, Zhu L, Kung HF. [ 68Ga]Ga-HBED-CC-FAPI Derivatives with Improved Radiolabeling and Specific Tumor Uptake. Mol Pharm 2023; 20:2159-2169. [PMID: 36942924 DOI: 10.1021/acs.molpharmaceut.2c01112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Fibroblast activation protein (FAP) is selectively expressed in tumors and highly important for maintaining the microenvironment in malignant tumors. Radioisotope-labeled FAP inhibitors (FAPIs) were proven to be useful for diagnosis and radionuclide therapy of cancer and are under active clinical investigations. Ga-HBED complex displays a higher in vivo stability constant (log KGaL: 38.5), compared to that of Ga-DOTA (log KGaL: 21.3). Such advantage in stability constant suggests that it may be useful for development of alternative FAPI imaging agents. In this study, previously reported [68Ga]Ga-DOTA-FAPI-02 and -04 were converted to the corresponding [68Ga]Ga-HBED-CC-FAPI-02 and -04 derivatives ([68Ga]Ga-4, [68Ga]Ga-5, [68Ga]Ga-6, and [68Ga]Ga-7). It was found that substituting the DOTA chelating group with HBED-CC led to several unique and desirable tumor-targeting properties: (1) robust, fast, and high yield labeling─readily adaptable to a kit formulation; (2) high stabilities in vitro; (3) excellent FAP binding affinities (IC50 ranging between 4 and 7 nM) and improved cell uptake and retention (in HT1080 (FAP+) cells); and (4) excellent selective in vivo tumor uptake in nude mice bearing U87MG tumor. It appeared that Ga(III) chelation with HBED-CC improved the in vivo kinetics favoring higher tumor uptake and retention compared to the corresponding Ga-DOTA complex. Out of the four tested ligands the new [68Ga]Ga-HBED-CC-FAPI dimer, [68Ga]Ga-6, displayed the best tumor localization properties, and further studies are warranted to demonstrate that it is an alternative FAP imaging agent for cancer patients.
Collapse
Affiliation(s)
- Haiyan Hong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Ruiyue Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yang Luo
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wenbin Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Linlin Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ran Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hui Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hank F Kung
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Shahrokhi P, Masteri Farahani A, Tamaddondar M, Rezazadeh F. The utility of radiolabeled PSMA ligands for tumor imaging. Chem Biol Drug Des 2021; 99:136-161. [PMID: 34472217 DOI: 10.1111/cbdd.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a glycosylated type-II transmembrane protein expressed in prostatic tissue and significantly overexpressed in several prostate cancer cells. Despite its name, PSMA has also been reported to be overexpressed in endothelial cells of benign and malignant non-prostate disease. So its clinical use was extended to detection, staging, and therapy of various tumor types. Recently small molecules targeting PSMA have been developed as imaging probes for diagnosis of several malignancies. Preliminary studies are emerging improved diagnostic sensitivity and specificity of PSMA imaging, leading to a change in patient management. In this review, we evaluated the first preclinical and clinical studies on PSMA ligands resulting future perspectives radiolabeled PSMA in staging and molecular characterization, based on histopathologic examinations of PSMA expression.
Collapse
Affiliation(s)
- Pejman Shahrokhi
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Arezou Masteri Farahani
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Mohammad Tamaddondar
- Nephrology Department, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Archibald SJ, Allott L. The aluminium-[ 18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharm Chem 2021; 6:30. [PMID: 34436693 PMCID: PMC8390636 DOI: 10.1186/s41181-021-00141-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The aluminium-[18F]fluoride ([18F]AlF) radiolabelling method combines the favourable decay characteristics of fluorine-18 with the convenience and familiarity of metal-based radiochemistry and has been used to parallel gallium-68 radiopharmaceutical developments. As such, the [18F]AlF method is popular and widely implemented in the development of radiopharmaceuticals for the clinic. In this review, we capture the current status of [18F]AlF-based technology and reflect upon its impact on nuclear medicine, as well as offering our perspective on what the future holds for this unique radiolabelling method.
Collapse
Affiliation(s)
- Stephen J Archibald
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - Louis Allott
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK.
| |
Collapse
|