1
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
2
|
Sun X, Yan B, Gong X, Xu Q, Guo Q, Shen H. Eight-Electron Copper Nanoclusters for Photothermal Conversion. Chemistry 2024; 30:e202400527. [PMID: 38470123 DOI: 10.1002/chem.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Owing to distinct physicochemical properties in comparison to gold and silver counterparts, atomically precise copper nanoclusters are attracting embryonic interest in material science. The introduction of copper cluster nanomaterials in more interesting fields is currently urgent and desired. Reported in this work are novel copper nanoclusters of [XCu54Cl12(tBuS)20(NO3)12] (X=S or none, tBuSH=2-methyl-2-propanethiol), which exhibit high performance in photothermal conversion. The clusters have been prepared in one pot and characterized by combinatorial techniques including ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and X-ray photoelectron spectroscopy (XPS). The molecular structure of the clusters, as revealed by single crystal X-ray diffraction analysis (SCXRD), shows the concentric three-shell Russian doll arrangement of X@Cu14@Cl12@Cu40. Interestingly, the [SCu54Cl12(tBuS)20(NO3)12] cluster contains 8 free valence electrons in its structure, making it the first eight-electron copper nanocluster stabilized by thiolates. More impressively, the clusters possess an effective photothermal conversion (temperature increases by 71 °C within ~50 s, λex=445 nm, 0.5 W cm-2) in a wide wavelength range (either blue or near-infrared). The photothermal conversion can be even driven under irradiation of simulated sunlight (3 sun), endowing the clusters with great potency in solar energy utilization.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
3
|
Jin X, Wang J, Wang Z, Pang W, Chen Y, Yang L. Chromatin-modifying protein 4C (CHMP4C) affects breast cancer cell growth and doxorubicin resistance as a potential breast cancer therapeutic target. J Antibiot (Tokyo) 2024; 77:93-101. [PMID: 37993600 DOI: 10.1038/s41429-023-00683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Breast cancer (BCa) is one of the common malignancies among women. Doxorubicin (Dox), a type of anthracycline anti-tumor drug, is a first-line chemotherapy drug for BCa. It is badly needed to effectively reverse BCa resistance to Dox and improve the clinical symptoms of BCa. Chromatin Modification protein 4C (CHMP4C) is a subunit of the endosomal sorting complex and is expressed in the nucleus and cytoplasm. CHMP4C has been shown to be overexpressed in multiple types of cancers. However, its possible effects on the progression and drug resistance of BCa are still unclear. In this study, we found CHMP4C was highly expressed in BCa tissues and promoted cell proliferation. In addition, CHMP4C promoted resistance of BCa cells to Dox through targeting Snail. We further found that knockdown of CHMP4C inhibited tumor growth and enhanced sensitivity to Dox in vivo. We therefore thought CHMP4C could serve as a target for decreasing BCa drug resistance.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China
| | - Jian Wang
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China
| | - Zhengyi Wang
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China
| | - Wenyang Pang
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China
| | - Yong Chen
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China
| | - Li Yang
- Department of Anesthesiology, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
4
|
Ping J, Liu W, Chen Z, Li C. Lymph node metastases in breast cancer: Mechanisms and molecular imaging. Clin Imaging 2023; 103:109985. [PMID: 37757640 DOI: 10.1016/j.clinimag.2023.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Breast cancer is the most common malignant disease of women in the world. Breast cancer often metastasizes to axillary lymph nodes. Accurate assessment of the status of axillary lymph nodes is crucial to the staging and treatment of breast cancer. None of the methods used clinically for preoperative noninvasive examination of axillary lymph nodes can accurately identify cancer cells from a molecular level. In recent years, with the in-depth study of lymph node metastases, the mechanisms and molecular imaging of lymph node metastases in breast cancer have been reported. In this review, we highlight the new progress in the study of the main mechanisms of lymph node metastases in breast cancer. In addition, we analyze the advantages and disadvantages of traditional preoperative axillary lymph node imaging methods for breast cancer, and list molecular imaging methods that can accurately identify breast cancer cells in lymph nodes.
Collapse
Affiliation(s)
- Jieyi Ping
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Wei Liu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Zhihui Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Cuiying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
5
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
6
|
Wang H, Yue X, Wu H, Wan Y, Tong Y, Zhao Y, Li Y, Pan J. A biocompatible NIR-II light-responsive nanoknife for permanent male sterilization. NANOSCALE ADVANCES 2023; 5:5029-5035. [PMID: 37705788 PMCID: PMC10496908 DOI: 10.1039/d3na00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
Nanomaterial-mediated photothermal therapy (PTT) is a promising strategy for permanent male sterilization owing to its easy operation, rapid heating, minimal invasiveness, and high spatiotemporal controllability. However, the currently available PTT for male sterilization utilizes irradiation sources in the first near-infrared window (NIR-I), which may suffer from incomplete sterilization due to the insufficient penetration depth of NIR-I light. Herein, we developed a facile one-pot hydrothermal synthetic method of cysteine-coated copper sulfide (Cys-CuS) nanosheets for the second NIR window (NIR-II) PTT-mediated permanent male sterilization. In this method, Cys acted not only as a template but also as a sulfur resource in the formation of Cys-CuS nanosheets. The obtained Cys-CuS nanosheets possessed good photothermal properties and satisfied deep-tissue light response capacity under 1064 nm laser exposure. Given this, the permanent male sterilization in vivo was readily achieved by Cys-CuS nanosheets in a rapid manner (only 40 s). To the best of our knowledge, it is the first time that nanomaterial-mediated NIR-II PTT is applied for permanent male sterilization. We believe that the facilely prepared biocompatible Cys-CuS nanosheets can serve as a promising NIR-II light-responsive nanoknife to control the overpopulation of domestic pets and stray animals.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin 300052 China
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050 China
| | - Xiaomeng Yue
- Ultrasonic Diagnosis and Treatment Department, National Clinical Research Center of Cancer, Tianjin Cancer Hospital Ariport Hospital Tianjin 300052 China
| | - Huanhuan Wu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin 300052 China
| | - Yeda Wan
- Ultrasonic Diagnosis and Treatment Department, National Clinical Research Center of Cancer, Tianjin Cancer Hospital Ariport Hospital Tianjin 300052 China
| | - Yujie Tong
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin 300052 China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University Tianjin 300211 China
| | - Yijun Li
- Inner Mongolia Medical University Hohhot 010050 China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin 300052 China
| |
Collapse
|
7
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
8
|
Wang X, Dai G, Jiang G, Zhang D, Wang L, Zhang W, Chen H, Cheng T, Zhou Y, Wei X, Li F, Ma D, Tan S, Wei R, Xi L. A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and targeted enhanced photothermal therapy. J Nanobiotechnology 2023; 21:130. [PMID: 37069646 PMCID: PMC10108508 DOI: 10.1186/s12951-023-01883-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND TMVP1 is a novel tumor targeting polypeptide screened by our laboratory with a core sequence of five amino acids LARGR. It specially binds to vascular endothelial growth factor receptor-3 (VEGFR-3), which is mainly expressed on neo-lymphatic vessels in sentinel lymph node (SLN) with tumor metastasis in adults. Here, we prepared a targeted nanoprobe using TMVP1-modified nanomaterials for tumor metastasis SLN imaging. RESULTS In this study, TMVP1-modified polymer nanomaterials were loaded with the near-infrared (NIR) fluorescent dye, indocyanine green (ICG), to prepare a molecular imaging TMVP1-ICG nanoparticles (NPs) to identify tumor metastasis in SLN at molecular level. TMVP1-ICG-NPs were successfully prepared using the nano-precipitation method. The particle diameter, morphology, drug encapsulation efficiency, UV absorption spectrum, cytotoxicity, safety, and pharmacokinetic properties were determined. The TMVP1-ICG-NPs had a diameter of approximately 130 nm and an ICG loading rate of 70%. In vitro cell experiments and in vivo mouse experiments confirmed that TMVP1-ICG-NPs have good targeting ability to tumors in situ and to SLN with tumor metastasis by binding to VEGFR-3. Effective photothermal therapy (PTT) with TMVP1-ICG-NPs was confirmed in vitro and in vivo. As expected, TMVP1-ICG-NPs improved ICG blood stability, targeted tumor metastasis to SLN, and enhanced PTT/photodynamic (PDT) therapy, without obvious cytotoxicity, making it a promising theranostic nanomedicine. CONCLUSION TMVP1-ICG-NPs identified SLN with tumor metastasis and were used to perform imaging-guided PTT, which makes it a promising strategy for providing real-time NIR fluorescence imaging and intraoperative PTT for patients with SLN metastasis.
Collapse
Affiliation(s)
- Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Geyang Dai
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Guiying Jiang
- Department of Gynecology, West China Second University Hospital, Chengdu, 610000, China
| | - Danya Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ling Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wen Zhang
- Hubei University of Medicine, Shiyan, 442000, China
| | - Huang Chen
- School of Medicine, Jianghan University, Wuhan, 430000, China
| | - Teng Cheng
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiao Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Fei Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Rui Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Ling Xi
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
9
|
Ali MRK, Warner PE, Yu AM, Tong M, Han T, Tang Y. Preventing Metastasis Using Gold Nanorod-Assisted Plasmonic Photothermal Therapy in Xenograft Mice. Bioconjug Chem 2022; 33:2320-2331. [PMID: 35156818 DOI: 10.1021/acs.bioconjchem.2c00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite significant research regarding metastasis, there has been limited success in preventing it. However, gold nanoparticle (AuNP) technology has shown the potential to inhibit metastasis. Our earlier studies of gold nanorod-assisted plasmonic photothermal therapy (AuNRs-PPTT), where gold nanorods (AuNRs) were irradiated with near-infrared (NIR) light to induce heat, were utilized in slowing cancer cell migration in vitro. Herein, we have expanded the in vitro studies of the AuNRs-PPTT to xenograft mice to inhibit metastasis of mammary gland tumors. The study duration was 32 days from 4T1 cancer cell injections in four treatment groups: control (PBS), NIR Only, AuNRs, and AuNRs + NIR. Multiple AuNRs-PPTT treatment sessions with intratumoral AuNRs injections were conducted every 7 days on average on the mice. Photoacoustic spectroscopy has been utilized to study the distribution and aggregation of AuNRs within the tumors and the drainage of particles to the sentinel right subiliac lymph node. The photoacoustic results revealed that the AuNRs' shapes are still stable regardless of their heterogeneous distributions inside the mammalian tumor and lymph nodes. Bioluminescence imaging was used to monitor metastasis using luciferin labeling techniques and has shown that AuNRs-PPTT inhibited metastasis completely within the first 21 days. Moreover, proteomics was run to determine the most pivotal inhibitory pathways: NETosis, cell growth, cell proliferation, inflammation, and extracellular matrix (ECM) degradation. These five mechanisms are interdependent within related networks, which synergistically explains the molecular mechanism of metastasis inhibition by AuNRs-PPTT. The current in vivo data ensures the viability of PPTT applications in inhibiting metastasis in humans.
Collapse
Affiliation(s)
- Moustafa R K Ali
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Paige E Warner
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anthony M Yu
- Ultrasound Imaging and Therapeutics Research Laboratory, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tiegang Han
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yan Tang
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Tian C, Xue X, Chen Y, Liu R, Wang Y, Ye S, Fu Z, Luo Y, Wang S, He X, Pang H. Phosphotungstate Acid Doped Polyanilines Nanorods for in situ NIR-II Photothermal Therapy of Orthotopic Hepatocellular Carcinoma in Rabbit. Int J Nanomedicine 2022; 17:5565-5579. [PMID: 36444199 PMCID: PMC9700472 DOI: 10.2147/ijn.s380370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Second near-infrared photothermal therapy (NIR-II PTT) has become a promising strategy for treating cancer in terms of safety and potency. However, the application of NIR-II PTT was limited in the treatment of deep-buried solid tumors due to the low dose of NIR-II absorption nanomaterials and the inadequate laser energy in the deep tumor. METHODS Herein, the authors report the engineering of NIR-II absorbing polyaniline nanorods, termed HPW@PANI Nanorods, for in situ NIR-II PTT based on optical fibers transmission of laser power and transarterial infusion for the treatment of orthotopic hepatocellular carcinoma in the rabbit. HPW@PANI Nanorods were prepared via chemical oxidant polymerization of aniline under phosphotungstic acid, which exhibited effective NIR-II absorption for hyperthermia ablation cells. RESULTS HPW@PANI Nanorods were fast and efficiently deposited into primary orthotopic transplantation VX2 tumor in rabbits via transarterial infusion. Furthermore, an optical fiber was interventionally inserted into the primary VX2 tumor to transmit 1064nm laser energy for in situ NIR-II PTT, which could ablate primary tumor, inhibit distant tumor, and suppress peritoneal metastasis. CONCLUSION This study provides new insights into the application of in situ NIR-II PTT based on optical fibers transmission of laser power and transarterial injection of NIR-II absorption nanomaterials to treat deep-buried tumors.
Collapse
Affiliation(s)
- Chen Tian
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - XiaoLei Xue
- Department Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of BioMedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Yutong Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Sheng Ye
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of BioMedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Zeyu Fu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Yingrui Luo
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Shengmiao Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Xiaofeng He
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Huajin Pang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| |
Collapse
|
11
|
Zhang T, Li P, Guo W, Liu Q, Qiao W, Deng M. NCAPH promotes proliferation as well as motility of breast cancer cells by activating the PI3K/AKT pathway. Physiol Int 2022. [PMID: 36067021 DOI: 10.1556/2060.2022.00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 02/18/2024]
Abstract
Objective This study aimed to assess the expression of NCAPH in human breast cancer, and to investigate its effects on breast cancer cells. Methods Bioinformation analysis was performed to analyze the expression of NCAPH in human breast cancer tissues and normal tissues in TCGA database. qPCR and Immunoblot assays were performed to clarify the expression of NCAPH in breast cancer tissues and cell lines, respectively. CCK-8, colony formation, FCM, transwell, and immunoblot assays were performed to reveal the effects of NCAPH on breast cancer proliferation, cell cycle, motility and EMT of breast cancer cells. Additionally, immunoblot assays were performed to investigate the effects of NCAPH on the PI3K/AKT pathway in breast cancer. Results We found that NCAPH was highly expressed in human breast cancer cell lines. The depletion of NCAPH suppressed the viability of breast cancer cells. Further, we noticed that its downregulation restrained breast cancer cell migration as well as invasion, and the EMT process. Mechanically, we noticed that NCAPH mediated the PI3K/AKT pathway, and therefore contributed to breast cancer progression. Conclusion In summary, NCAPH has the potential to serve as a breast cancer target.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, 471003, China
| | - Peng Li
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, 471003, China
| | - Wanying Guo
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, 471003, China
| | - Qipeng Liu
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, 471003, China
| | - Weiqiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, 471003, China
| | - Miao Deng
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, 471003, China
| |
Collapse
|
12
|
Zhong Z, Liu C, Xu Y, Si W, Wang W, Zhong L, Zhao Y, Dong X. γ-Fe 2 O 3 Loading Mitoxantrone and Glucose Oxidase for pH-Responsive Chemo/Chemodynamic/Photothermal Synergistic Cancer Therapy. Adv Healthc Mater 2022; 11:e2102632. [PMID: 35107866 DOI: 10.1002/adhm.202102632] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/04/2022] [Indexed: 01/23/2023]
Abstract
Traditional cancer therapy is limited by poor prognosis and risk of recurrence. Emerging therapies offer alternatives to these problems. In addition, synergistic therapy can combine the advantages of multiple therapies to eliminate cancer cells while attenuating damage to normal tissues. Herein, a theranostic nanoplatform based on the chemotherapeutic drug mitoxantrone (MTO) and glucose oxidase (GOx) co-loaded γ-Fe2 O3 nanoparticles (MTO-GOx@γ-Fe2 O3 NPs) is designed and prepared to realize photoacoustic imaging-guided chemo/chemodynamic/photothermal (CT/CDT/PTT) synergistic cancer therapy. With a particle size of about 86.2 nm, the synthesized MTO-GOx@γ-Fe2 O3 NPs can selectively accumulate at tumor sites by enhanced permeability and retention (EPR) effects. After entering cancer cells by endocytosis, MTO-GOx@γ-Fe2 O3 NPs decompose into Fe3+ ions and release cargo because of their pH-responsive characteristic. As a Food and Drug Administration (FDA)-approved chemotherapy drug, MTO shows strong DNA disruption ability and satisfying photothermal conversion ability under laser irradiation for photothermal therapy. Simultaneously, GOx catalyzes the decomposition of glucose and generates hydrogen peroxide (H2 O2 ) to enhance the chemodynamic therapy efficiency. In vitro and in vivo experiments reveal that MTO-GOx@γ-Fe2 O3 NPs possess a significant synergistic therapeutic effect in cancer treatment.
Collapse
Affiliation(s)
- Zhihao Zhong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Chao Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Yatao Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Wenjun Wang
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology School of Physical Science and Information Technology Liaocheng University Liaocheng 252059 China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics Guangxi Key Laboratory of Biotargeting Theranostics Collaborative Innovation Center for Targeting Tumor Theranostics Guangxi Medical University Guangxi 530021 China
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics Guangxi Key Laboratory of Biotargeting Theranostics Collaborative Innovation Center for Targeting Tumor Theranostics Guangxi Medical University Guangxi 530021 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| |
Collapse
|