1
|
Skakuj K, Iglhaut M, Shao Q, Garcia FJ, Huang BY, Brittain SM, Nesvizhskii AI, Schirle M, Nomura DK, Toste FD. Light-Activated Reactivity of Nitrones with Amino Acids and Proteins. Angew Chem Int Ed Engl 2025; 64:e202415976. [PMID: 39509590 PMCID: PMC11753931 DOI: 10.1002/anie.202415976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Controlled modifications of amino acids are an indispensable tool for advancing fundamental and translational research based on peptides and proteins. Yet, we still lack methods to chemically modify each naturally occurring amino acid sidechain. To help address this gap, we show that N,α-diaryl oxaziridines expand the scope of bioconjugation methods to chemically modify cysteine, methionine, and tryptophan residues with evidence for additional tyrosine labelling in a proteomic context. Conjugation primarily at tryptophan sites can be accessed by selective cleavage of modifications at other sidechains. The N,α-diaryl oxaziridine reagents are accessed through photoisomerization of nitrones, which serve as photocaged reagents, thus providing an additional level of control over reactivity. Initial guiding principles for the design of nitrone reagents are developed by exploring the impact of structure on UV/Vis absorption, photoisomerization, and reactivity. We identify a nitrone structure that maximizes photoisomerization efficiency, the aqueous stability of the oxaziridine, the extent of amino acid modification, and the stability of the resulting amino acid conjugates. We then translate nitrone reagents to modify proteins in aqueous conditions. Finally, we use nitrones to profile reactive residues across the proteome of a mammalian cell line and find that they expand the proteome coverage.
Collapse
Affiliation(s)
- Kacper Skakuj
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Maximilian Iglhaut
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Qian Shao
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | | | - Bo-Yang Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Ann Arbor, Michigan, 48109, USA
| | | | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| |
Collapse
|
2
|
Voutyritsa E, Gryparis C, Theodorou A, Velonia K. Synthesis of Multifunctional Protein-Polymer Conjugates via Oxygen-tolerant, Aqueous Copper-Mediated Polymerization, and Bioorthogonal Click Chemistry. Macromol Rapid Commun 2023; 44:e2200976. [PMID: 37002553 DOI: 10.1002/marc.202200976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Indexed: 04/04/2023]
Abstract
Oxygen-tolerant, aqueous copper-mediated polymerization approaches are combined with click chemistry in either a sequential or a simultaneous manner, to enable the synthesis of multifunctional protein-polymer conjugates. Propargyl acrylate (PgA) and propargyl methacrylate (PgMA) grafting from a bovine serum albumin (BSA) macroinitiator is thoroughly optimized to synthesize chemically addressable BSA-poly(propargyl acrylate) and BSA-poly(propargyl methacrylate) respectively. The produced multifunctional bioconjugates bear pendant terminal 1-alkynes which can be readily post-functionalized via both [3+2] Huisgen cycloaddition and thiol-yne click chemistry under mild reaction conditions. Simultaneous oxygen-tolerant, aqueous copper-catalyzed polymerization, and click chemistry mediate the in situ multiple chemical tailoring of biomacromolecules in excellent yields.
Collapse
Affiliation(s)
- Errika Voutyritsa
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Charis Gryparis
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Alexis Theodorou
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| |
Collapse
|
3
|
Kitagawa K, Okuma N, Yoshinaga M, Takemae H, Sato F, Sato S, Nakabayashi S, Yoshikawa HY, Suganuma M, Luedtke N, Matsuzaki T, Tera M. Ion-Pair-Enhanced Double-Click Driven Cell Adhesion and Altered Expression of Related Genes. Bioconjug Chem 2023. [PMID: 36763006 DOI: 10.1021/acs.bioconjchem.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Bio-orthogonal ligations that crosslink living cells with a substrate or other cells require high stability and rapid kinetics to maintain the nature of target cells. In this study, we report water-soluble cyclooctadiyne (WS-CODY) derivatives that undergo an ion-pair enhanced double-click reaction. The cationic side chain of WS-CODY accelerated the kinetics on the azide-modified cell surface due to proximity effect. Cationic WS-CODY was able to crosslink azide-modified, poorly adherent human lung cancer PC-9 cells not only to azide-grafted glass substrates but also to other cells within 5-30 min. We discovered that cell-substrate crosslinking induced the ITGA5 gene expression, whereas cell-cell crosslinking induced the CTNNA1 gene, according to the adhesion partner. Ion-pair-enhanced WS-CODY can be applied to a wide range of cells with established azide modifications and is expected to provide a powerful tool to regulate cell-substrate and cell-cell interactions.
Collapse
Affiliation(s)
- Kohei Kitagawa
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Nao Okuma
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Moeka Yoshinaga
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Fumiya Sato
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Shoma Sato
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Seiichiro Nakabayashi
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Future Innovation, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masami Suganuma
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nathan Luedtke
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Takahisa Matsuzaki
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Future Innovation, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|