1
|
Yang Z, Shi A, Zhang R, Ji Z, Li J, Lyu J, Qian J, Chen T, Wang X, You F, Xie J. When Metal Nanoclusters Meet Smart Synthesis. ACS NANO 2024; 18:27138-27166. [PMID: 39316700 DOI: 10.1021/acsnano.4c09597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) represent a fascinating class of ultrasmall nanoparticles with molecule-like properties, bridging conventional metal-ligand complexes and nanocrystals. Despite their potential for various applications, synthesis challenges such as a precise understanding of varied synthetic parameters and property-driven synthesis persist, hindering their full exploitation and wider application. Incorporating smart synthesis methodologies, including a closed-loop framework of automation, data interpretation, and feedback from AI, offers promising solutions to address these challenges. In this perspective, we summarize the closed-loop smart synthesis that has been demonstrated in various nanomaterials and explore the research frontiers of smart synthesis for MNCs. Moreover, the perspectives on the inherent challenges and opportunities of smart synthesis for MNCs are discussed, aiming to provide insights and directions for future advancements in this emerging field of AI for Science, while the integration of deep learning algorithms stands to substantially enrich research in smart synthesis by offering enhanced predictive capabilities, optimization strategies, and control mechanisms, thereby extending the potential of MNC synthesis.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Anye Shi
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zuowei Ji
- School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Jiali Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Fengqi You
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell University AI for Science Institute (CUAISci), Cornell University, Ithaca, New York 14853, United States
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
2
|
Caschera D, Brugnoli B, Primitivo L, De Angelis M, Righi G, Pilloni L, Campi G, Imperatori P, Pentimalli M, Masi A, Liscio A, Rea G, Suber L. Synthesis of Photoluminescent 2D Self-Assembled Silver Thiolate Nanoclusters for Sensors and Biomolecule Support. Inorg Chem 2024; 63:3724-3734. [PMID: 38359353 DOI: 10.1021/acs.inorgchem.3c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Silver thiolate nanoclusters (Ag NCs) show distinctive optical properties resulting from their hybrid nature, metallic and molecular, exhibiting size-, structure-, and surface-dependent photoluminescence, thus enabling the exploitation of Ag NCs for potential applications in nanobiotechnology, catalysis, and biomedicine. However, tailoring Ag NCs for specific applications requires achieving long-term stability and may involve modifying surface chemistry, fine-tuning ligand composition, or adding functional groups. In this study, we report the synthesis of novel Ag NCs using 2-ethanephenylthiolate (SR) as a ligand, highlight critical points addressing stability, and characterize their optical and structural properties. A preliminary electrical characterization revealed high anisotropy, well suited for potential use in electronics/sensing applications. We also present the synthesis and characterization of Ag NCs using 10-carboxylic 2-ol thiolate (SR'COOH) having a terminal carboxylic group for conjugation with amine-containing molecules. We present a preliminary assessment of its bioconjugation capability using bovine serum albumin as a model protein indicating its prospective application as a biomolecule support.
Collapse
Affiliation(s)
- Daniela Caschera
- ISMN-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | - Benedetta Brugnoli
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Ludovica Primitivo
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Martina De Angelis
- Dipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Giuliana Righi
- IBPM-CNR-c/o DipDipartimento di Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Luciano Pilloni
- ENEA-SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre, 00123 Rome, Italy
| | - Gaetano Campi
- IC-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | | | - Marzia Pentimalli
- ENEA-SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre, 00123 Rome, Italy
| | - Andrea Masi
- ENEA FSN-COND, Superconductivity Section, Frascati Research Center, 00044 Frascati, Italy
| | - Andrea Liscio
- IMM-CNR, via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Giuseppina Rea
- IC-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| | - Lorenza Suber
- ISM-CNR, Strada Provinciale 35d, n.9, 00010 Montelibretti, Rome, Italy
| |
Collapse
|