1
|
Mittal S, Kumar C, Jha L, Mallia MB. A thiourea-bridged 99mTc(CO) 3-dipicolylamine-2-nitroimidazole complex for targeting tumor hypoxia: Utilizing metabolizable thiourea-bridge to improve pharmacokinetics. Drug Dev Res 2024; 85:e22258. [PMID: 39253992 DOI: 10.1002/ddr.22258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
The 2-nitroimidazole based 99mTc-radiopharmaceuticals are widely explored for imaging tumor hypoxia. Radiopharmaceuticals for targeting hypoxia are often lipophilic and therefore, show significant uptake in liver and other vital organs. In this context, lipophilic radiopharmaceuticals with design features enabling faster clearance from liver may be more desirable. A dipicolylamine-NCS bifunctional chelator that could generate a thiourea-bridge up on conjugation to primary amine bearing molecule was used to synthesize a 2-nitroimidazole-dipicolyl amine ligand for radiolabeling with 99mTc(CO)3 core. Corresponding Re(CO)3-analogue was prepared to establish the structure of 2-nitroimidazole-99mTc(CO)3 complex prepared in trace level. The 2-nitroimidazole-99mTc(CO)3 complex showed a hypoxic to normoxic ratio of ~2.5 in CHO cells at 3 h. In vivo, the complex showed accumulation and retention in tumor with high tumor to blood and tumor to muscle ratio. The study demonstrated the utility of metabolizable thiourea-bridge in 2-nitroimidazole-99mTc(CO)3 complex in inducing faster clearance of the radiotracer from liver. The dipicolylamine-NCS bifunctional chelator reported herein can also be used for radiolabeling other class of target specific molecules with 99mTc(CO)3 core.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Anushaktinagar, India
| | - Laxmi Jha
- Health Prime Services Private Limited, Mumbai, India
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Anushaktinagar, India
| |
Collapse
|
2
|
Kim TI, Cho S, Jin H, Bae J, Park C, Kim Y. Activatable Fluorescent Probes Targeting Urokinase-Type Plasminogen Activator Receptor on the Cell Membrane. Chemistry 2023; 29:e202203739. [PMID: 36734188 DOI: 10.1002/chem.202203739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored protein located on the cell surface that is implicated in the promotion of metastasis. New fluorescent probes for the detection of uPAR expression that feature a rapid "turn-on" response are reported here. They consist of a donor-π-acceptor-based fluorophore conjugated with a uPAR-binding AE105 peptide. The resulting AE105-coupled uPAR-targeting probes are weakly emissive in aqueous buffer solutions; however, a fluorescence "turn-on" signal is instantly triggered upon specific binding to uPAR (KD =63.2 nM for P1 and 49.5 nM for P2), which restricts the rotational deactivation of the fluorophore. Applications of the probes were demonstrated in the imaging of uPAR overexpressed on the membrane of cancer cell and in a cell-based uPAR inhibitor assay.
Collapse
Affiliation(s)
- Tae-Il Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Siyoung Cho
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Park Road, Yanji, Jilin Province, 133002, China
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Chanhee Park
- Metareceptome Research Center, School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
3
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Bhol M, Claude G, Jungfer MR, Abram U, Sathiyendiran M. Calix[4]arene-Analogous Technetium Supramolecules. Inorg Chem 2022; 61:5173-5177. [PMID: 35319206 DOI: 10.1021/acs.inorgchem.1c03691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calix[4]arene-analogous technetium supramolecules (1 and 2) were assembled using (NBu4)[Tc2(μ-Cl)3(CO)6] and neutral flexible bidentate nitrogen-donor ligands (L1 and L2) consisting of four arene units covalently joined via methylene units. The neutral homoleptic technetium macrocycles adopt a partial cone/cone-shaped conformation in the solid state. These supramolecules are the first example of fac-[Tc(CO)3]+ core-based metallocalix[4]arenes and second example of fac-[Tc(CO)3]+ core-based metallomacrocycles. Structurally similar fac-[Re(CO)3]+ core-based macrocycles (3 and 4) were also prepared using [Re(CO)5X] (where X = Cl or Br) and L1 or L2. The products were characterized spectroscopically and by X-ray analysis.
Collapse
Affiliation(s)
- Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Guilhem Claude
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin D-14195, Germany
| | - Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin D-14195, Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin D-14195, Germany
| | | |
Collapse
|
5
|
Kankanamalage PH, Hoerres R, Ho KV, Anderson CJ, Gallazzi F, Hennkens HM. p-NCS-Bn-NODAGA as a bifunctional chelator for radiolabeling with the 186Re/99mTc-tricarbonyl core: Radiochemistry with model complexes and a GRPR-targeting peptide. Nucl Med Biol 2022; 108-109:1-9. [DOI: 10.1016/j.nucmedbio.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/30/2022]
|
6
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Day AH, Domarkas J, Nigam S, Renard I, Cawthorne C, Burke BP, Bahra GS, Oyston PCF, Fallis IA, Archibald SJ, Pope SJA. Towards dual SPECT/optical bioimaging with a mitochondrial targeting, 99mTc(i) radiolabelled 1,8-naphthalimide conjugate. Dalton Trans 2020; 49:511-523. [PMID: 31844857 DOI: 10.1039/c9dt04024b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of six different 1,8-naphthalimide conjugated dipicolylamine ligands (L1-6) have been synthesised and characterised. The ligands possess a range of different linker units between the napthalimide fluorophore and dipcolylamine chelator which allow the overall lipophilicity to be tuned. A corresponding series of Re(i) complexes have been synthesised of the form fac-[Re(CO)3(L1-6)]BF4. The absorption and luminescence properties of the ligands and Re(i) complexes were dominated by the intramolecular charge transfer character of the substituted fluorophore (typically absorption ca. 425 nm and emission ca. 520 nm). Photophysical assessments show that some of the variants are moderately bright. Radiolabelling experiments using a water soluble ligand variant (L5) were successfully undertaken and optimised with fac-[99mTc(CO)3(H2O)3]+. Confocal fluorescence microscopy showed that fac-[Re(CO)3(L5)]+ localises in the mitochondria of MCF-7 cells. SPECT/CT imaging experiments on naïve mice showed that fac-[99mTc(CO)3(L5)]+ has a relatively high stability in vivo but did not show any cardiac uptake, demonstrating rapid clearance, predominantly via the biliary system along with a moderate amount cleared renally.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lodhi NA, Park JY, Kim K, Kim YJ, Shin JH, Lee YS, Im HJ, Jeong JM, Khalid M, Cheon GJ, Lee DS, Kang KW. Development of 99mTc-Labeled Human Serum Albumin with Prolonged Circulation by Chelate-then-Click Approach: A Potential Blood Pool Imaging Agent. Mol Pharm 2019; 16:1586-1595. [PMID: 30869911 DOI: 10.1021/acs.molpharmaceut.8b01258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Technetium-99m-labeled human serum albumin (99mTc-HSA) has been utilized as a blood pool imaging agent in the clinic for several decades. However, 99mTc-HSA has a short circulation time, which is a critical shortcoming for a blood pool imaging agent. Herein, we developed a novel 99mTc-labeled HSA with a long circulation time using click chemistry and a chelator, 2,2'-dipicolylamine (DPA), (99mTc-DPA-HSA). Specifically, we examined the feasibility of copper-free strain-promoted alkyne-azide cycloaddition (SPAAC) for the incorporation of HSA to the [99mTc (CO)3(H2O)3]+ system by adopting a chelate-then-click approach. In this strategy, a potent chelate system, azide-functionalized DPA, was first complexed with [99mTc (CO)3(H2O)3]+, followed by the SPAAC click reaction with azadibenzocyclooctyne-functionalized HSA (ADIBO-HSA) under biocompatible conditions. Radiolabeling efficiency of azide-functionalized DPA (99mTc-DPA) was >98%. Click conjugation efficiency of 99mTc-DPA with ADIBO-HSA was between 76 and 99% depending on the number of ADIBO moieties attached to HSA. In whole-body in vivo single photon emission computed tomography images, the blood pool uptakes of 99mTc-DPA-HSA were significantly enhanced compared to those of 99mTc-HSA at 10 min, 2, and 6 h after the injection ( P < 0.001, 0.025, and 0.003, respectively). Furthermore, the blood activities of 99mTc-DPA-HSA were 8 times higher at 30 min and 10 times higher at 3 h after the injection compared to those of conventional 99mTc-HSA in ex vivo biodistribution experiment. The results exhibit the potential of 99mTc-DPA-HSA as a blood pool imaging agent and further illustrate the promise of the pre-labeling SPAAC approach for conjugation of heat-sensitive biological targeting vectors with [99mTc (CO)3(H2O)3]+.
Collapse
Affiliation(s)
- Nadeem Ahmed Lodhi
- Department of Nuclear Medicine , Seoul National University College of Medicine , Seoul , 03080 , Republic of Korea.,Isotope Production Division , Pakistan Institute of Nuclear Science & Technology (PINSTECH) , P. O. Nilore, 45650 , Islamabad , Pakistan
| | - Ji Yong Park
- Department of Nuclear Medicine , Seoul National University College of Medicine , Seoul , 03080 , Republic of Korea.,Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , 03080 , Republic of Korea
| | - Kyuwan Kim
- Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , 03080 , Republic of Korea
| | - Young Joo Kim
- Department of Nuclear Medicine , Seoul National University College of Medicine , Seoul , 03080 , Republic of Korea
| | - Jae Hwan Shin
- Department of Chemistry, Graduate School , Kyung Hee University , Seoul , 02453 , Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine , Seoul National University College of Medicine , Seoul , 03080 , Republic of Korea
| | - Hyung-Jun Im
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology , Seoul National University , Seoul , 08826 , Republic of Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine , Seoul National University College of Medicine , Seoul , 03080 , Republic of Korea
| | - Muhammad Khalid
- Isotope Production Division , Pakistan Institute of Nuclear Science & Technology (PINSTECH) , P. O. Nilore, 45650 , Islamabad , Pakistan
| | - Gi Jeong Cheon
- Department of Nuclear Medicine , Seoul National University College of Medicine , Seoul , 03080 , Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine , Seoul National University College of Medicine , Seoul , 03080 , Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine , Seoul National University College of Medicine , Seoul , 03080 , Republic of Korea
| |
Collapse
|
9
|
Lin J, Qiu L, Lv G, Li K, Wang W, Liu G, Zhao X, Wang S. Synthesis and preliminary biological evaluation of a99mTc-chlorambucil derivative as a potential tumor imaging agent. J Labelled Comp Radiopharm 2016; 60:116-123. [DOI: 10.1002/jlcr.3481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Ling Qiu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Gaochao Lv
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Ke Li
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Wei Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Guiqing Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Xueyu Zhao
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Shanshan Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| |
Collapse
|