1
|
Xie F, Jiang H, Jia X, Zhang J, Zhu Z, Du J, Tang Y. Bridgehead Alkene-Enabled Strain-Driven Bioorthogonal Reaction. Org Lett 2022; 24:5304-5308. [PMID: 35849354 DOI: 10.1021/acs.orglett.2c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report a novel bioorthogonal reaction that hinges on a bridgehead alkene (BHA)-enabled inverse-electron-demand Diels-Alder (IEDDA) cycloaddition. Readily accessible from natural product β-caryophyllene, the strained BHA displays high reactivity toward the IEDDA reaction while maintaining excellent biocompatibility. The developed IEDDA reaction has been applied to in vitro protein labeling and pretargeted live cell imaging.
Collapse
Affiliation(s)
- Fayang Xie
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiangqian Jia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhu Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Wang S, Li Y, Zhou H, Wang L, Wang R. Development of Biocompatible Ene-Ligation Enabled by Prenyl-Based β-Caryophyllene with Triazoline/Selectfluor under Physiological Conditions. J Org Chem 2022; 87:8648-8655. [PMID: 35708493 DOI: 10.1021/acs.joc.2c00841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we first report a rapid and highly selective biocompatible ligation that proceeds via a strain-promoted prenyl-involved [2, 3]-Ene rearrangement process. We demonstrate the usefulness of naturally occurring strain-promoted β-caryophyllene with triazoline (PTAD)/Selectfluor in the study of tagging molecule-of-interest. Experiments in peptide (Histone H3 (1-21) and Myhc (614-629)) and protein (BSA, βLG, and HSP40) models exemplified the utility of the Ene-ligation for in vivo imaging and tracking.
Collapse
Affiliation(s)
- Sheng Wang
- The Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- The Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongling Zhou
- The Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Wang
- Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Rui Wang
- The Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
3
|
Caryophyllene and caryophyllene oxide: a variety of chemical transformations and biological activities. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Xie F, Jia X, Zhu Z, Wu Y, Jiang H, Yang H, Cao Y, Zhu R, Zhou B, Du J, Tang Y. Chemical trigger-enabled bioconjugation reaction. Org Biomol Chem 2021; 19:8343-8351. [PMID: 34518846 DOI: 10.1039/d1ob01177d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of conceptually novel and practically useful bioconjugation reactions has been an intense pursuit of chemical biology research. Herein, we report an unprecedented bioconjugation reaction that hinges on a chemical trigger-enabled inverse-electron-demand Diels-Alder (IEDDA) cycloaddition of trans-cycloheptene (TCH) with tetrazine. Unlike the conventional strain-promoted bioconjugation reactions that utilize built-in strained alkenes as reactants, the current one features a "trigger-release-conjugate" reaction model, in which a highly strained TCH species is released from a bench-stable bicyclic N-nitrosourea (BNU) derivative upon treatment with an external stimulus. It is noteworthy that the reactivity-stability balance of BNU derivatives could be tuned by manipulating their N-1 substituents. As a proof-of-concept case, this new chemical trigger-enabled IEDDA reaction has been applied to in vitro protein labeling and pretargeted cell imaging. This work opens a new avenue to utilize BNU derivatives as a new class of chemical reporters in bioconjugate chemistry.
Collapse
Affiliation(s)
- Fayang Xie
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Xiangqian Jia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Zhu Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Yunfei Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Yu Cao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Li S, Shi L, Zhang L, Huang H, Xiao Y, Mao L, Tan R, Fu Z, Yu N, Yin D. Ionic liquid-mediated catalytic oxidation of β-caryophyllene by ultrathin 2D metal-organic framework nanosheets under 1 atm O2. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Affiliation(s)
- Matteo Zanda
- Loughborough University Centre for Sensing and Imaging Science School of Science Sir David Davies Building, Chemistry Department 113TU Loughborough United Kingdom
- C.N.R.‐SCITEC Via Mancinelli 7 20131 Milano Italy
| | - Raffaella Bucci
- Loughborough University Centre for Sensing and Imaging Science School of Science Sir David Davies Building, Chemistry Department 113TU Loughborough United Kingdom
| | - Nikki L. Sloan
- Loughborough University Centre for Sensing and Imaging Science School of Science Sir David Davies Building, Chemistry Department 113TU Loughborough United Kingdom
| | - Lydia Topping
- Loughborough University Centre for Sensing and Imaging Science School of Science Sir David Davies Building, Chemistry Department 113TU Loughborough United Kingdom
| |
Collapse
|
7
|
Mi P, He L, Shen T, Sun JZ, Zhao H. A Novel Fluorescent Skeleton from Disubstituted Thiochromenones via Nickel-Catalyzed Cycloaddition of Sulfobenzoic Anhydrides with Alkynes. Org Lett 2019; 21:6280-6284. [DOI: 10.1021/acs.orglett.9b02161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pengbing Mi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lirong He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tanxiao Shen
- MOE Key Laboratory of Macromolecular Synthesis & Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis & Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|