1
|
Huber ME, Wurnig S, Toy L, Weiler C, Merten N, Kostenis E, Hansen FK, Schiedel M. Fluorescent Ligands Enable Target Engagement Studies for the Intracellular Allosteric Binding Site of the Chemokine Receptor CXCR2. J Med Chem 2023. [PMID: 37463496 PMCID: PMC10388362 DOI: 10.1021/acs.jmedchem.3c00769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of CXC chemokine receptor 2 (CXCR2), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in oncology and inflammation. Starting from the cocrystallized intracellular CXCR2 antagonist 00767013 (1), tetramethylrhodamine (TAMRA)-labeled CXCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CXCR2. By means of these studies, we developed Mz438 (9a) as a high-affinity and selective fluorescent CXCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and high-throughput manner. Further, we show that 9a can be used as a tool to visualize intracellular target engagement for CXCR2 via fluorescence microscopy. Thus, our small-molecule-based fluorescent CXCR2 ligand 9a represents a promising tool for future studies of CXCR2 pharmacology.
Collapse
Affiliation(s)
- Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Silas Wurnig
- Department of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lara Toy
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Corinna Weiler
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Finn K Hansen
- Department of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Dekkers S, Caspar B, Goulding J, Kindon ND, Kilpatrick LE, Stoddart LA, Briddon SJ, Kellam B, Hill SJ, Stocks MJ. Small-Molecule Fluorescent Ligands for the CXCR4 Chemokine Receptor. J Med Chem 2023; 66:5208-5222. [PMID: 36944083 PMCID: PMC10108349 DOI: 10.1021/acs.jmedchem.3c00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The C-X-C chemokine receptor type 4, or CXCR4, is a chemokine receptor found to promote cancer progression and metastasis of various cancer cell types. To investigate the pharmacology of this receptor, and to further elucidate its role in cancer, novel chemical tools are a necessity. In the present study, using classic medicinal chemistry approaches, small-molecule-based fluorescent probes were designed and synthesized based on previously reported small-molecule antagonists. Here, we report the development of three distinct chemical classes of fluorescent probes that show specific binding to the CXCR4 receptor in a novel fluorescence-based NanoBRET binding assay (pKD ranging 6.6-7.1). Due to their retained affinity at CXCR4, we furthermore report their use in competition binding experiments and confocal microscopy to investigate the pharmacology and cellular distribution of this receptor.
Collapse
Affiliation(s)
- Sebastian Dekkers
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Birgit Caspar
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Nicholas D Kindon
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Laura E Kilpatrick
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Leigh A Stoddart
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Stephen J Briddon
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Barrie Kellam
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Division of Physiology, Pharmacology & Neuroscience, Medical School, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Michael J Stocks
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
3
|
Discovery and mechanistic study of thiazole-4-acylsulfonamide derivatives as potent and orally active ChemR23 inhibitors with a long-acting effect in cynomolgus monkeys. Bioorg Med Chem 2022; 56:116587. [DOI: 10.1016/j.bmc.2021.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
|
4
|
Engineering with NanoLuc: a playground for the development of bioluminescent protein switches and sensors. Biochem Soc Trans 2021; 48:2643-2655. [PMID: 33242085 DOI: 10.1042/bst20200440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The small engineered luciferase NanoLuc has rapidly become a powerful tool in the fields of biochemistry, chemical biology, and cell biology due to its exceptional brightness and stability. The continuously expanding NanoLuc toolbox has been employed in applications ranging from biosensors to molecular and cellular imaging, and currently includes split complementation variants, engineering techniques for spectral tuning, and bioluminescence resonance energy transfer-based concepts. In this review, we provide an overview of state-of-the-art NanoLuc-based sensors and switches with a focus on the underlying protein engineering approaches. We discuss the advantages and disadvantages of various strategies with respect to sensor sensitivity, modularity, and dynamic range of the sensor and provide a perspective on future strategies and applications.
Collapse
|
5
|
Cho EJ, Dalby KN. Luminescence Energy Transfer-Based Screening and Target Engagement Approaches for Chemical Biology and Drug Discovery. SLAS DISCOVERY 2021; 26:984-994. [PMID: 34330171 DOI: 10.1177/24725552211036056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Luminescence is characterized by the spontaneous emission of light resulting from either chemical or biological reactions. Because of their high sensitivity, reduced background interference, and applicability to numerous situations, luminescence-based assay strategies play an essential role in early-stage drug discovery. Newer developments in luminescence-based technologies have dramatically affected the ability of researchers to investigate molecular binding events. At the forefront of these developments are the nano bioluminescence resonance energy transfer (NanoBRET) and amplified luminescent proximity homogeneous assay (Alpha) technologies. These technologies have opened up numerous possibilities for analyzing the molecular biophysical properties of complexes in environments such as cell lysates. Moreover, NanoBRET enables the validation and quantitation of the interactions between therapeutic targets and small molecules in live cells, representing an essential benchmark for preclinical drug discovery. Both techniques involve proximity-based luminescence energy transfer, in which excited-state energy is transferred from a donor to an acceptor, where the efficiency of transfer depends on proximity. Both approaches can be applied to high-throughput compound screening in biological samples, with the NanoBRET assay providing opportunities for live-cell screening. Representative applications of both technologies for assessing physical interactions and associated challenges are discussed.
Collapse
Affiliation(s)
- Eun Jeong Cho
- Targeted Therapeutic Drug Discovery and Development Program, Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kevin N Dalby
- Targeted Therapeutic Drug Discovery and Development Program, Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Arafiles JVV, Hirose H, Hirai Y, Kuriyama M, Sakyiamah MM, Nomura W, Sonomura K, Imanishi M, Otaka A, Tamamura H, Futaki S. Discovery of a Macropinocytosis‐Inducing Peptide Potentiated by Medium‐Mediated Intramolecular Disulfide Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Hisaaki Hirose
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Yusuke Hirai
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Masashi Kuriyama
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Maxwell Mamfe Sakyiamah
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
- Current address: Graduate School of Biomedical and Health Sciences Hiroshima University 1-2-3 Kasumi, Minami-ku Hiroshima 734-8553 Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine Graduate School of Medicine Kyoto University Kyoto 606-8501 Japan
- Life Science Research Center, Technology Research Laboratory Shimadzu Corporation Kyoto 604-8445 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Akira Otaka
- Institute of Biomedical Sciences Graduate School of Pharmaceutical Sciences Tokushima University Tokushima 770-8505 Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
7
|
Arafiles JVV, Hirose H, Hirai Y, Kuriyama M, Sakyiamah MM, Nomura W, Sonomura K, Imanishi M, Otaka A, Tamamura H, Futaki S. Discovery of a Macropinocytosis‐Inducing Peptide Potentiated by Medium‐Mediated Intramolecular Disulfide Formation. Angew Chem Int Ed Engl 2021; 60:11928-11936. [DOI: 10.1002/anie.202016754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Indexed: 12/11/2022]
Affiliation(s)
| | - Hisaaki Hirose
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Yusuke Hirai
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Masashi Kuriyama
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Maxwell Mamfe Sakyiamah
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
- Current address: Graduate School of Biomedical and Health Sciences Hiroshima University 1-2-3 Kasumi, Minami-ku Hiroshima 734-8553 Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine Graduate School of Medicine Kyoto University Kyoto 606-8501 Japan
- Life Science Research Center, Technology Research Laboratory Shimadzu Corporation Kyoto 604-8445 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Akira Otaka
- Institute of Biomedical Sciences Graduate School of Pharmaceutical Sciences Tokushima University Tokushima 770-8505 Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
8
|
BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M 2 muscarinic acetylcholine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118930. [PMID: 33347921 DOI: 10.1016/j.bbamcr.2020.118930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
BRET and fluorescence anisotropy (FA) are two fluorescence-based techniques used for the characterization of ligand binding to G protein-coupled receptors (GPCRs) and both allow monitoring of ligand binding in real time. In this study, we present the first direct comparison of BRET-based and FA-based binding assays using the human M2 muscarinic acetylcholine receptor (M2R) and two TAMRA (5-carboxytetramethylrhodamine)-labeled fluorescent ligands as a model system. The determined fluorescent ligand affinities from both assays were in good agreement with results obtained from radioligand competition binding experiments. The assays yielded real-time kinetic binding data revealing differences in the mechanism of binding for the investigated fluorescent probes. Furthermore, the investigation of various unlabeled M2R ligands yielded pharmacological profiles in accordance with earlier reported data. Taken together, this study showed that BRET- and FA-based binding assays represent valuable alternatives to radioactivity-based methods for screening purposes and for a precise characterization of binding kinetics supporting the exploration of binding mechanisms.
Collapse
|
9
|
Allikalt A, Purkayastha N, Flad K, Schmidt MF, Tabor A, Gmeiner P, Hübner H, Weikert D. Fluorescent ligands for dopamine D 2/D 3 receptors. Sci Rep 2020; 10:21842. [PMID: 33318558 PMCID: PMC7736868 DOI: 10.1038/s41598-020-78827-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Fluorescent ligands are versatile tools for the study of G protein-coupled receptors. Depending on the fluorophore, they can be used for a range of different applications, including fluorescence microscopy and bioluminescence or fluorescence resonance energy transfer (BRET or FRET) assays. Starting from phenylpiperazines and indanylamines, privileged scaffolds for dopamine D2-like receptors, we developed dansyl-labeled fluorescent ligands that are well accommodated in the binding pockets of D2 and D3 receptors. These receptors are the target proteins for the therapy for several neurologic and psychiatric disorders, including Parkinson’s disease and schizophrenia. The dansyl-labeled ligands exhibit binding affinities up to 0.44 nM and 0.29 nM at D2R and D3R, respectively. When the dansyl label was exchanged for sterically more demanding xanthene or cyanine dyes, fluorescent ligands 10a-c retained excellent binding properties and, as expected from their indanylamine pharmacophore, acted as agonists at D2R. While the Cy3B-labeled ligand 10b was used to visualize D2R and D3R on the surface of living cells by total internal reflection microscopy, ligand 10a comprising a rhodamine label showed excellent properties in a NanoBRET binding assay at D3R.
Collapse
Affiliation(s)
- Anni Allikalt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Nirupam Purkayastha
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Khajidmaa Flad
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Alina Tabor
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
10
|
Grätz L, Tropmann K, Bresinsky M, Müller C, Bernhardt G, Pockes S. NanoBRET binding assay for histamine H 2 receptor ligands using live recombinant HEK293T cells. Sci Rep 2020; 10:13288. [PMID: 32764682 PMCID: PMC7414126 DOI: 10.1038/s41598-020-70332-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/24/2020] [Indexed: 01/12/2023] Open
Abstract
Fluorescence/luminescence-based techniques play an increasingly important role in the development of test systems for the characterization of future drug candidates, especially in terms of receptor binding in the field of G protein-coupled receptors (GPCRs). In this article, we present the establishment of a homogeneous live cell-based BRET binding assay for the histamine H2 receptor with different fluorescently labeled squaramide-type compounds synthesized in the course of this study. Py-1-labeled ligand 8 (UR-KAT478) was found to be most suitable in BRET saturation binding experiments with respect to receptor affinity (pKd = 7.35) and signal intensity. Real-time kinetic experiments showed a full association of 8 within approximately 30 min and a slow dissociation of the ligand from the receptor. Investigation of reference compounds in BRET-based competition binding with 8 yielded pKi values in agreement with radioligand binding data. This study shows that the BRET binding assay is a versatile test system for the characterization of putative new ligands at the histamine H2 receptor and represents a valuable fluorescence-based alternative to canonical binding assays.
Collapse
Affiliation(s)
- Lukas Grätz
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Katharina Tropmann
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Merlin Bresinsky
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christoph Müller
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
11
|
|