1
|
Jin X, Zhang N, Yan T, Wei J, Hao L, Sun C, Zhao H, Jiang S. Lactate-mediated metabolic reprogramming of tumor-associated macrophages: implications for tumor progression and therapeutic potential. Front Immunol 2025; 16:1573039. [PMID: 40433363 PMCID: PMC12106438 DOI: 10.3389/fimmu.2025.1573039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) is characterized by distinct metabolic adaptations that not only drive tumor progression but also profoundly influence immune responses. Among these adaptations, lactate, a key metabolic byproduct of aerobic glycolysis, accumulates in the TME and plays a pivotal role in regulating cellular metabolism and immune cell function. Tumor-associated macrophages (TAMs), known for their remarkable functional plasticity, serve as critical regulators of the immune microenvironment and tumor progression. Lactate modulates TAM polarization by influencing the M1/M2 phenotypic balance through diverse signaling pathways, while simultaneously driving metabolic reprogramming. Furthermore, lactate-mediated histone and protein lactylation reshapes TAM gene expression, reinforcing their immunosuppressive properties. From a therapeutic perspective, targeting lactate metabolism has shown promise in reprogramming TAMs and enhancing anti-tumor immunity. Combining these metabolic interventions with immunotherapies may further augment treatment efficacy. This review underscores the crucial role of lactate in TAM regulation and tumor progression, highlighting its potential as a promising therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Xiaohan Jin
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Jining, China
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyang Wei
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingli Hao
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Changgang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haibo Zhao
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Jining, China
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Ma Y, Hu Y, Liu H, Li X, Li Y, Zhao Y, Zhang Q, Zhang Z, Leng Q, Luo L, Li L, Dai Y, Chen G, Zhang J, Li Z. High-Lactate-Metabolizing Photosynthetic Bacteria Reprogram Tumor Immune Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405930. [PMID: 38924191 DOI: 10.1002/adma.202405930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The elevated levels of lactate in tumor tissue play a pivotal role in fostering an immunosuppressive microenvironment. Therefore, efficiently reducing lactate levels to reprogram tumor immune microenvironment (TIM) is considered a crucial step for boosted immunotherapy. Here, a high-lactate-metabolizing photosynthetic bacteria (LAB-1) is selectively screened for TIM reprogramming, which then improves the efficacy of tumor immunotherapy. The culture medium for LAB-1 screening is initially developed through an orthogonal experiment, simulating the tumor microenvironment (TME) and utilizing lactate as the sole organic carbon source. As demonstrated in a murine 4T1 model, LAB-1 colonizes the TME selectively, resulting in a significant reduction in lactate levels and a subsequent increase in pH values within the tumor tissue. Furthermore, single-cell RNA sequencing analysis reveals that LAB-1 effectively reprograms the TIM, thereby enhancing the effectiveness of antitumor immune therapy. This approach of utilizing lactate-consuming bacteria represents a potent tool for augmenting tumor immunotherapy efficiency.
Collapse
Affiliation(s)
- Yichuan Ma
- College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China
| | - Yujing Hu
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Huifang Liu
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Xiaoya Li
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Yuanhang Li
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Yu Zhao
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Qi Zhang
- College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China
| | - Ziyang Zhang
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Qingqing Leng
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Li Luo
- The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Jinchao Zhang
- College of Chemistry & Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| |
Collapse
|
3
|
Keller CR, Martinez SR, Keltz A, Chen M, Li W. Lactate Oxidase Disrupts Lactate-Activated RAS and PI3K Oncogenic Signaling. Cancers (Basel) 2024; 16:2817. [PMID: 39199589 PMCID: PMC11353192 DOI: 10.3390/cancers16162817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
LOX was recently shown to inhibit cancer cell proliferation and tumor growth. The mechanism of this inhibition, however, has been exclusively attributed to LOX depletion of TME lactate, a cancer cell energy source, and production of H2O2, an oxidative stressor. We report that TME lactate triggers the assembly of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1)-associated protein complex, which includes GRB2, SOS1, KRAS, GAB1, and PI3K, for the activation of both the RAS and the PI3K oncogenic signaling pathways in breast cancer (BCa) cells. LOX treatment decreased the levels of the proteins in the protein complex via induction of their proteasomal degradation. In addition, LOX inhibited lactate-stimulated expression of the lactate transporters MCT1 and MCT4. Our data suggest that HCAR1 activation by lactate is crucial for the assembly and function of the RAS and PI3K signaling nexus. Shutting down lactate signaling by disrupting this nexus could be detrimental to cancer cells. HCAR1 is therefore a promising target for the control of the RAS and the PI3K signaling required for BCa progression. Thus, our study provides insights into lactate signaling regulation of cancer progression and extends our understanding of LOX's functional mechanisms that are fundamental for exploring its therapeutic potential.
Collapse
Affiliation(s)
- Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Steve R. Martinez
- Department of Surgery, The Everett Clinic, Part of Optum, Everett, WA 98201, USA
- Providence Regional Cancer Partnership, Providence Regional Medical Center, Everett, WA 98201, USA
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Alexys Keltz
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Eastern Washington University, Cheney, WA 99004, USA
| | - Michelle Chen
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Ferris High School, Spokane, WA 99223, USA
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
4
|
Zhang W, Wang M, Ji C, Liu X, Gu B, Dong T. Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials. Biomed Pharmacother 2024; 177:116930. [PMID: 38878638 DOI: 10.1016/j.biopha.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space. The interplay between the TME and macrophage polarization can influence tumor initiation and progression, making TAM a potential target for cancer therapy. Here, we review the latest investigations on factors orchestrating macrophage polarization in the TME, how macrophage polarization affects tumor progression, and the perspectives in modulating macrophage polarization for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenru Zhang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, China
| | - Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
6
|
Li L, Yue T, Feng J, Zhang Y, Hou J, Wang Y. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. NANOSCALE 2024; 16:8739-8758. [PMID: 38602362 DOI: 10.1039/d3nr05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lactate oxidase (LOX) is a natural enzyme that efficiently consumes lactate. In the presence of oxygen, LOX can catalyse the formation of pyruvate and hydrogen peroxide (H2O2) from lactate. This process led to acidity alleviation, hypoxia, and a further increase in oxidative stress, alleviating the immunosuppressive state of the tumour microenvironment (TME). However, the high cost of LOX preparation and purification, poor stability, and systemic toxicity limited its application in tumour therapy. Therefore, the rational application of drug delivery systems can protect LOX from the organism's environment and maintain its catalytic activity. This paper reviews various LOX-based drug-carrying systems, including inorganic nanocarriers, organic nanocarriers, and inorganic-organic hybrid nanocarriers, as well as other non-nanocarriers, which have been used for tumour therapy in recent years. In addition, this area's challenges and potential for the future are highlighted.
Collapse
Affiliation(s)
- Lu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Feng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yujun Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
7
|
Ou DL, Liao ZX, Kempson IM, Li L, Yang PC, Tseng SJ. Nano-modified viruses prime the tumor microenvironment and promote the photodynamic virotherapy in liver cancer. J Biomed Sci 2024; 31:1. [PMID: 38163894 PMCID: PMC10759334 DOI: 10.1186/s12929-023-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND As of 2020, hepatocellular carcinoma (HCC), a form of liver cancer, stood as the third most prominent contributor to global cancer-related mortality. Combining immune checkpoint inhibitors (ICI) with other therapies has shown promising results for treating unresectable HCC, offering new opportunities. Recombinant adeno-associated viral type 2 (AAV2) virotherapy has been approved for clinical use but it efficacy is stifled through systemic administration. On the other hand, iron oxide nanoparticles (ION) can be cleared via the liver and enhance macrophage polarization, promoting infiltration of CD8+ T cells and creating a more favorable tumor microenvironment for immunotherapy. METHODS To enhance the efficacy of virotherapy and promote macrophage polarization towards the M1-type in the liver, ION-AAV2 were prepared through the coupling of ION-carboxyl and AAV2-amine using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)/N-hydroxysulfosuccinimide (Sulfo-NHS). Efficacy after systemic delivery of ION-AAV2 in an orthotopic HCC model was evaluated. RESULTS After 28 days, the tumor weight in mice treated with ION-AAV2 was significantly reduced by 0.56-fold compared to the control group. The ION-AAV2 treatment led to an approximate 1.80-fold increase in the level of tumor associated M1-type macrophages, while the number of M2-type macrophages was reduced by 0.88-fold. Moreover, a proinflammatory response increased the population of tumor-infiltrating CD8+ T cells in the ION-AAV2 group. This transformation converted cold tumors into hot tumors. CONCLUSIONS Our findings suggest that the conjugation of ION with AAV2 could be utilized in virotherapy while simultaneously exploiting macrophage-modulating cancer immunotherapies to effectively suppress HCC growth.
Collapse
Affiliation(s)
- Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, 10051, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Lin Li
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, 10051, Taiwan.
- Program in Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
8
|
Liao ZX, Hsu SH, Tang SC, Kempson I, Yang PC, Tseng SJ. Potential targeting of the tumor microenvironment to improve cancer virotherapy. Pharmacol Ther 2023; 250:108521. [PMID: 37657673 DOI: 10.1016/j.pharmthera.2023.108521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
In 2015, oncolytic virotherapy was approved for clinical use, and in 2017, recombinant adeno-associated virus (AAV) delivery was also approved. However, systemic administration remains challenging due to the limited number of viruses that successfully reach the target site. Although the US Food and Drug Administration (FDA) permits the use of higher doses of AAV to achieve greater rates of transduction, most AAV still accumulates in the liver, potentially leading to toxicity there and elsewhere. Targeting the tumor microenvironment is a promising strategy for cancer treatment due to the critical role of the tumor microenvironment in controlling tumor progression and influencing the response to therapies. Newly discovered evidence indicates that administration routes focusing on the tumor microenvironment can promote delivery specificity and transduction efficacy within the tumor. Here, we review approaches that involve modifying viral surface features, modulating the immune system, and targeting the physicochemical characteristics in tumor microenvironment to regulate therapeutic delivery. Targeting tumor acidosis presents advantages that can be leveraged to enhance virotherapy outcomes and to develop new therapeutic approaches that can be integrated with standard treatments.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10051, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - S Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan; Program in Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
9
|
Luo X, Xiong H, Jiang Y, Fan Y, Zuo C, Chen D, Chen L, Lin H, Gao J. Macrophage Reprogramming via Targeted ROS Scavenging and COX-2 Downregulation for Alleviating Inflammation. Bioconjug Chem 2023. [PMID: 37330989 DOI: 10.1021/acs.bioconjchem.3c00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Inflammation-related diseases affect large populations of people in the world and cause substantial healthcare burdens, which results in significant costs in time, material, and labor. Preventing or relieving uncontrolled inflammation is critical for the treatment of these diseases. Herein, we report a new strategy for alleviating inflammation by macrophage reprogramming via targeted reactive oxygen species (ROS) scavenging and cyclooxygenase-2 (COX-2) downregulation. As a proof of concept, we synthesize a multifunctional compound named MCI containing a mannose-based macrophage targeting moiety, an indomethacin (IMC)-based segment for inhibiting COX-2, and a caffeic acid (CAF)-based section for ROS clearance. As revealed by a series of in vitro experiments, MCI could significantly attenuate the expression of COX-2 and the level of ROS, leading to M1 to M2 macrophage reprogramming, as evidenced by the reduction and the elevation in the levels of pro-inflammatory M1 markers and anti-inflammatory M2 markers, respectively. Furthermore, in vivo experiments show MCI's promising therapeutic effects on rheumatoid arthritis (RA). Our work illustrates the success of targeted macrophage reprogramming for inflammation alleviation, which sheds light on the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiangjie Luo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Xiong
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhang Jiang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Fan
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cuicui Zuo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxia Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Jiang S, Chen X, Lin J, Huang P. Lactate-Oxidase-Instructed Cancer Diagnosis and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207951. [PMID: 36353879 DOI: 10.1002/adma.202207951] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Indexed: 05/12/2023]
Abstract
Lactate oxidase (LOx) has attracted extensive interest in cancer diagnosis and therapy in recent years owing to its specific catalysis on l-lactate; its catalytic process consumes oxygen (O2 ) and generates a large amount of hydrogen peroxide (H2 O2 ) and pyruvate. Given high levels of lactate in tumor tissues and its tight correlation with tumor growth, metastasis, and recurrence, LOx-based biosensors including H2 O2 -based, O2 -based, pH-sensitive, and electrochemical have been designed for cancer diagnosis, and various LOx-based cancer therapy strategies including lactate-depletion-based metabolic cancer therapy/immunotherapy, hypoxia-activated chemotherapy, H2 O2 -based chemodynamic therapy, and multimodal synergistic cancer therapy have also been developed. In this review, the lactate-specific catalytic properties of LOx are introduced, and the recent advances on LOx-instructed cancer diagnostic or therapeutic platforms and corresponding biological applications are summarized. Additionally, the challenges and potential of LOx-based nanomedicines are highlighted.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xin Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
11
|
Kang Y, Yeo M, Choi H, Jun H, Eom S, Park SG, Yoon H, Kim E, Kang S. Lactate oxidase/vSIRPα conjugates efficiently consume tumor-produced lactates and locally produce tumor-necrotic H 2O 2 to suppress tumor growth. Int J Biol Macromol 2023; 231:123577. [PMID: 36758763 DOI: 10.1016/j.ijbiomac.2023.123577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
12
|
Feng Q, Hao Y, Yang S, Yuan X, Chen J, Mei Y, Liu L, Chang J, Zhang Z, Wang L. A metabolic intervention strategy to break evolutionary adaptability of tumor for reinforced immunotherapy. Acta Pharm Sin B 2023; 13:775-786. [PMID: 36873182 PMCID: PMC9979089 DOI: 10.1016/j.apsb.2022.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
The typical hallmark of tumor evolution is metabolic dysregulation. In addition to secreting immunoregulatory metabolites, tumor cells and various immune cells display different metabolic pathways and plasticity. Harnessing the metabolic differences to reduce the tumor and immunosuppressive cells while enhancing the activity of positive immunoregulatory cells is a promising strategy. We develop a nanoplatform (CLCeMOF) based on cerium metal-organic framework (CeMOF) by lactate oxidase (LOX) modification and glutaminase inhibitor (CB839) loading. The cascade catalytic reactions induced by CLCeMOF generate reactive oxygen species "storm" to elicit immune responses. Meanwhile, LOX-mediated metabolite lactate exhaustion relieves the immunosuppressive tumor microenvironment, preparing the ground for intracellular regulation. Most noticeably, the immunometabolic checkpoint blockade therapy, as a result of glutamine antagonism, is exploited for overall cell mobilization. It is found that CLCeMOF inhibited glutamine metabolism-dependent cells (tumor cells, immunosuppressive cells, etc.), increased infiltration of dendritic cells, and especially reprogrammed CD8+ T lymphocytes with considerable metabolic flexibility toward a highly activated, long-lived, and memory-like phenotype. Such an idea intervenes both metabolite (lactate) and cellular metabolic pathway, which essentially alters overall cell fates toward the desired situation. Collectively, the metabolic intervention strategy is bound to break the evolutionary adaptability of tumors for reinforced immunotherapy.
Collapse
Affiliation(s)
- Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Yutong Hao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiqi Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomin Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuying Mei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lanlan Liu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Junbiao Chang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
13
|
Dietsche CL, Hirth E, Dittrich PS. Multiplexed analysis of signalling proteins at the single-immune cell level. LAB ON A CHIP 2023; 23:362-371. [PMID: 36606762 PMCID: PMC9844122 DOI: 10.1039/d2lc00891b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
High numbers of tumour-associated macrophages (TAMs) in the tumour microenvironment are associated with a poor prognosis. However, the effect of TAMs on tumour progression depends on the proteins secreted by individual TAMs. Here, we developed a microfluidic platform to quantitatively measure the secreted proteins of individual macrophages as well as macrophages polarized by the culture medium derived from breast cancer cells. The macrophages were captured in hydrodynamic traps and isolated with pneumatically activated valves for single-cell analysis. Barcoded and functionalized magnetic beads were captured in specially designed traps to determine the secreted proteins by immunoassay. Individual bead trapping facilitated the recording of the protein concentration since all beads were geometrically constrained in the same focal plane, which is an important requirement for rapid and automated image analysis. By determining three signaling proteins, namely interleuking 10 (IL-10), vascular endothelial growth factor (VEGF), and tumour necrosis factor alpha (TNF-α), we successfully distinguished between differently polarized macrophages. The results indicate a heterogeneous pattern, with M2 macrophages characterized by a higher secretion of IL-10, while M1 macrophages secrete high levels of the inflammatory cytokine TNF-α. The macrophages treated with the supernatant from cancer cells show a similar signalling pattern to M2 macrophages with an increased secretion of the pro-tumoural cytokine VEGF. This microfluidic method resolves correlations in signaling protein expression at the single-cell level. Ultimately, single-macrophage analysis can contribute to the development of novel therapies aimed at reversing M2-like TAMs into M1-like TAMs.
Collapse
Affiliation(s)
- Claudius L Dietsche
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4125 Basel, Switzerland.
| | - Elisabeth Hirth
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4125 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4125 Basel, Switzerland.
| |
Collapse
|
14
|
Choi H, Yeo M, Kang Y, Kim HJ, Park SG, Jang E, Park SH, Kim E, Kang S. Lactate oxidase/catalase-displaying nanoparticles efficiently consume lactate in the tumor microenvironment to effectively suppress tumor growth. J Nanobiotechnology 2023; 21:5. [PMID: 36597089 PMCID: PMC9811728 DOI: 10.1186/s12951-022-01762-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The aggressive proliferation of tumor cells often requires increased glucose uptake and excessive anaerobic glycolysis, leading to the massive production and secretion of lactate to form a unique tumor microenvironment (TME). Therefore, regulating appropriate lactate levels in the TME would be a promising approach to control tumor cell proliferation and immune suppression. To effectively consume lactate in the TME, lactate oxidase (LOX) and catalase (CAT) were displayed onto Aquifex aeolicus lumazine synthase protein nanoparticles (AaLS) to form either AaLS/LOX or AaLS/LOX/CAT. These complexes successfully consumed lactate produced by CT26 murine colon carcinoma cells under both normoxic and hypoxic conditions. Specifically, AaLS/LOX generated a large amount of H2O2 with complete lactate consumption to induce drastic necrotic cell death regardless of culture condition. However, AaLS/LOX/CAT generated residual H2O2, leading to necrotic cell death only under hypoxic condition similar to the TME. While the local administration of AaLS/LOX to the tumor site resulted in mice death, that of AaLS/LOX/CAT significantly suppressed tumor growth without any severe side effects. AaLS/LOX/CAT effectively consumed lactate to produce adequate amounts of H2O2 which sufficiently suppress tumor growth and adequately modulate the TME, transforming environments that are favorable to tumor suppressive neutrophils but adverse to tumor-supportive tumor-associated macrophages. Collectively, these findings showed that the modular functionalization of protein nanoparticles with multiple metabolic enzymes may offer the opportunity to develop new enzyme complex-based therapeutic tools that can modulate the TME by controlling cancer metabolism.
Collapse
Affiliation(s)
- Hyukjun Choi
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Mirae Yeo
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Yujin Kang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Hyo Jeong Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Seong Guk Park
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Eunjung Jang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sung Ho Park
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Eunhee Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sebyung Kang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
15
|
Sun L, Gao W, Liu J, Wang J, Li L, Yu H, Xu ZP. O 2-Supplying Nanozymes Alleviate Hypoxia and Deplete Lactate to Eliminate Tumors and Activate Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56644-56657. [PMID: 36515637 DOI: 10.1021/acsami.2c18960] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Direct hypoxia alleviation and lactate depletion in the tumor microenvironment (TME) are promising for effective cancer therapy but still very challenging. To address this challenge, the current research directly reshapes the TME for inhibiting tumor growth and activating the antitumor immunity using a drug-free nanozyme. Herein, the acid-sensitive nanozymes were constructed based on peroxidized layered double hydroxide nanoparticles for O2 self-supply and self-boosted lactate depletion. The coloading of partially cross-linked catalase and lactate oxidase enabled the acid-sensitive nanozymes to promote three reactions, that is, (1) H2O2 generation from MgO2 hydrolysis (30% at pH 7.4 vs 63% at pH 6.0 in 8 h); (2) O2 generation from H2O2 (12% at pH 7.4 vs 21% at pH 6.0 in 2 h); and (3) lactate depletion by in situ generated O2 (50% under hypoxia vs 75% under normoxia in 24 h in vitro) in parallel or tandem. These promoted reactions together efficiently induced colon cancer cell apoptosis under the hypoxic conditions, significantly inhibited tumor growth (>95%), and suppressed distant tumor growth upon seven administrations in every 3 days and moreover transformed the immunosuppressive tumor into "hot" one in the colon tumor-bearing mouse model. This is the first example for a nanozyme that supplies sufficient O2 for hypoxia relief and lactate depletion, thus providing a new insight into drug-free nanomaterial-mediated TME-targeted cancer therapy.
Collapse
Affiliation(s)
- Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Wendong Gao
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD4059, Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai201203, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| |
Collapse
|
16
|
In vitro 2D and 3D cancer models to evaluate compounds that modulate macrophage polarization. Cell Immunol 2022; 378:104574. [DOI: 10.1016/j.cellimm.2022.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
|
17
|
Hsieh CC, Hsieh MJ, Wang YH, Liao ZX. Macrophage Distribution Affected by Virus-Encoded Granulocyte Macrophage Colony Stimulating Factor Combined with Lactate Oxidase. ACS OMEGA 2022; 7:24020-24026. [PMID: 35847295 PMCID: PMC9281315 DOI: 10.1021/acsomega.2c03213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oncolytic virotherapy was approved as a localized treatment for advanced melanoma by the US Food and Drug Administration (FDA) in 2015. Granulocyte macrophage colony stimulating factor (GM-CSF) encoded by clinical virus-infected tumor cells, acting as a pro-inflammatory cytokine or growth factor, increases tumor antigen presentation, leading to the activation of macrophages and T cells. Notably, tumor-secreted lactate can promote the suppressive functions of M2-polarized tumor-associated macrophages and subsequently promote tumor growth. Furthermore, the consumption of tumor-secreted lactate has been implicated in the beneficial polarization of macrophages. Here, we report that GM-CSF-encoded recombinant adeno-associated virus (AAV2-GM-CSF) infection in B16-F10 mouse melanoma cells combined with lactate oxidase (LOX) leads to the recruitment of M1 macrophages for the inhibition of cancer cell growth. This study suggests that GM-CSF combined with LOX has potential as cancer virotherapy.
Collapse
|
18
|
Jin M, Cao W, Chen B, Xiong M, Cao G. Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Front Cell Dev Biol 2022; 10:808859. [PMID: 35646923 PMCID: PMC9136137 DOI: 10.3389/fcell.2022.808859] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor evolution is influenced by events involving tumor cells and the environment in which they live, known as the tumor microenvironment (TME). TME is a functional and structural niche composed of tumor cells, endothelial cells (ECs), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells (MSCs), and a subset of immune cells (macrophages, dendritic cells, natural killer cells, T cells, B cells). Otto Warburg revealed the Warburg effect in 1923, a characteristic metabolic mechanism of tumor cells that performs high glucose uptake and excessive lactate formation even in abundant oxygen. Tumor tissues excrete a large amount of lactate into the extracellular microenvironment in response to TME’s hypoxic or semi-hypoxic state. High lactate concentrations in tumor biopsies have been linked to metastasis and poor clinical outcome. This indicates that the metabolite may play a role in carcinogenesis and lead to immune escape in TME. Lactate is now recognized as an essential carbon source for cellular metabolism and as a signaling molecule in TME, forming an active niche that influences tumor progression. This review summarized the advanced literature demonstrating the functional role of lactate in TME remodeling, elucidating how lactate shapes the behavior and the phenotype of both tumor cells and tumor-associated cells. We also concluded the intriguing interactions of multiple immune cells in TME. Additionally, we demonstrated how lactate functioned as a novel function factor by being used in a new histone modification, histone lysine lactylation, and to regulate gene expression in TME. Ultimately, because lactate created a favorable niche for tumor progression, we summarized potential anti-tumor strategies targeting lactate metabolism and signaling to investigate better cancer treatment.
Collapse
Affiliation(s)
| | | | - Bo Chen
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Maoming Xiong
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Guodong Cao
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| |
Collapse
|
19
|
Liu Y, Geng Y, Yue B, Lo PC, Huang J, Jin H. Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 12:832942. [PMID: 35111169 PMCID: PMC8801935 DOI: 10.3389/fimmu.2021.832942] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Luo T, Tan B, Zhu L, Wang Y, Liao J. A Review on the Design of Hydrogels With Different Stiffness and Their Effects on Tissue Repair. Front Bioeng Biotechnol 2022; 10:817391. [PMID: 35145958 PMCID: PMC8822157 DOI: 10.3389/fbioe.2022.817391] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Tissue repair after trauma and infection has always been a difficult problem in regenerative medicine. Hydrogels have become one of the most important scaffolds for tissue engineering due to their biocompatibility, biodegradability and water solubility. Especially, the stiffness of hydrogels is a key factor, which influence the morphology of mesenchymal stem cells (MSCs) and their differentiation. The researches on this point are meaningful to the field of tissue engineering. Herein, this review focus on the design of hydrogels with different stiffness and their effects on the behavior of MSCs. In addition, the effect of hydrogel stiffness on the phenotype of macrophages is introduced, and then the relationship between the phenotype changes of macrophages on inflammatory response and tissue repair is discussed. Finally, the future application of hydrogels with a certain stiffness in regenerative medicine and tissue engineering has been prospected.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lengjing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yating Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jinfeng Liao,
| |
Collapse
|
21
|
Khodadadi M, Jafari-Gharabaghlou D, Zarghami N. An update on mode of action of metformin in modulation of meta-inflammation and inflammaging. Pharmacol Rep 2022; 74:310-322. [PMID: 35067907 DOI: 10.1007/s43440-021-00334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common chronic metabolic condition. Several genetic and environmental factors are involved in developing T2DM. Aging, inflammation, and obesity are the main contributors to the initiation of T2DM. They cause chronic sterile meta-inflammation and insulin resistance, thereby making a person more susceptible to developing T2DM. Metformin, a natural cationic biguanide, is widely used as the first-line treatment of T2DM. The exact action mechanism behind the glucose-lowering effect of metformin is not clear, but, presumably, metformin utilizes a broad spectrum of molecular mechanisms to control blood glucose including decreasing intestinal glucose absorption, inhibition of the hepatic gluconeogenesis, decreasing insulin resistance, etc. Recent studies have shown that metformin exerts its effects through the inhibition of mitochondrial respiratory chain complex 1 and the AMP-activated protein kinase (AMPK) activation, but it has been identified in the other studies that AMPK is not the sole hub in metformin mode of action or there are other unknown mechanisms which are involved and yet to be explored. Therefore, here, we discuss the updated findings of the mechanism of action of metformin that contributes to the meta-inflammation and inflammaging action. It is proposed that figuring out the precise mechanism of action of metformin could improve its application in the fields of obesity, inflammation, aging, and inflammaging.
Collapse
Affiliation(s)
- Meysam Khodadadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey. .,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Nai A, Zeng H, Wu Q, He Z, Zeng S, Bashir S, Ma F, He J, Wan W, Xu M. lncRNA/miR-29c-Mediated High Expression of LOX Can Influence the Immune Status and Chemosensitivity and Can Forecast the Poor Prognosis of Gastric Cancer. Front Cell Dev Biol 2022; 9:760470. [PMID: 35047494 PMCID: PMC8762233 DOI: 10.3389/fcell.2021.760470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Gastric carcinoma is the fourth most prevalent cause of cancer-related deaths worldwide because of dismal prognosis and few therapeutic options. Accumulated studies have indicated that targeting lysyl oxidase (LOX) family members may serve as an anticancer strategy. Nevertheless, the specific mechanisms of LOX in stomach carcinoma are still unclear. In this study, we demonstrated that LOX is significantly different in 13 types of cancers and may act as a potential therapeutic target, especially in stomach carcinoma. Moreover, overexpression of LOX in gastric carcinoma was validated by multiple databases and contributed to the poor overall survival (OS), progression-free survival (PFS) and post-progression survival (PPS) of stomach adenocarcinoma (STAD) patients. Next, based on the ceRNA hypothesis, the HIF1A-AS2/RP11-366L20.2-miR-29c axis was characterized as the upstream regulatory mechanism of LOX gene overexpression in gastric cancer by combining correlation analysis, expression analysis, and survival analysis. Finally, we illustrated that LOX gene overexpression leads to dismal prognosis of gastric cancer, perhaps through promoting M2 macrophage polarization and tumor immune escape and enhancing drug resistance of tumor cells to chemotherapeutic drugs. Our research demonstrate that LOX may be potentially applied as a novel prognostic marker and targeting inhibition of LOX holds promise as a treatment strategy for gastric cancer.
Collapse
Affiliation(s)
- Aitao Nai
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huihui Zeng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiong Wu
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zirui He
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuwen Zeng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shoaib Bashir
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Ma
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie He
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Wei Wan
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
23
|
He R, Zang J, Zhao Y, Liu Y, Ruan S, Zheng X, Chong G, Xu D, Yang Y, Yang Y, Zhang T, Gu J, Dong H, Li Y. Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition. J Nanobiotechnology 2021; 19:426. [PMID: 34922541 PMCID: PMC8684183 DOI: 10.1186/s12951-021-01169-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Lactate plays a critical role in tumorigenesis, invasion and metastasis. Exhausting lactate in tumors holds great promise for the reversal of the immunosuppressive tumor microenvironment (TME). Herein, we report on a “lactate treatment plant” (i.e., nanofactory) that can dynamically trap pro-tumor lactate and in situ transformation into anti-tumor cytotoxic reactive oxygen species (ROS) for a synergistic chemodynamic and metabolic therapy. To this end, lactate oxidase (LOX) was nano-packaged by cationic polyethyleneimine (PEI), assisted by a necessary amount of copper ions (PLNPCu). As a reservoir of LOX, the tailored system can actively trap lactate through the cationic PEI component to promote lactate degradation by two-fold efficiency. More importantly, the byproducts of lactate degradation, hydrogen peroxide (H2O2), can be transformed into anti-tumor ROS catalyzing by copper ions, mediating an immunogenic cell death (ICD). With the remission of immunosuppressive TME, ICD process effectively initiated the positive immune response in 4T1 tumor model (88% tumor inhibition). This work provides a novel strategy that rationally integrates metabolic therapy and chemodynamic therapy (CDT) for combating tumors. ![]()
Collapse
Affiliation(s)
- Ruiqing He
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jie Zang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Ying Liu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Shuangrong Ruan
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Xiao Zheng
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Dailin Xu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Yan Yang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Yushan Yang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Tingting Zhang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jingjing Gu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Haiqing Dong
- Shanghai East hospital, School of Medicine, Tongji University, 200092, Shanghai, China.
| | - Yongyong Li
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
24
|
Liao ZX, Ou DL, Hsieh MJ, Hsieh CC. Synergistic Effect of Repolarization of M2 to M1 Macrophages Induced by Iron Oxide Nanoparticles Combined with Lactate Oxidase. Int J Mol Sci 2021; 22:ijms222413346. [PMID: 34948143 PMCID: PMC8705044 DOI: 10.3390/ijms222413346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic reprogramming of tumors with the accompanying reprogramming of glucose metabolism and production of lactate accumulation is required for the subsequent development of tumors. Recent evidence has indicated that tumor-secreted lactate can promote an oncolytic immune microenvironment within the tumor. Furthermore, tumor-secreted lactate directly induces polarization of tumor-supportive M2 macrophages. However, oxidized tumor-secreted lactate in the tumor microenvironment can be exploited. Iron oxide nanoparticles have shown promising anticancer potential by activating tumor-suppressing macrophages. Furthermore, lactate oxidase (LOX) generally oxidizes tumor-secreted lactate and subsequently converts to pyruvate. Particularly, the ratio of M2 macrophages to M1 macrophages corresponds with tumor growth. In this study, we present iron oxide nanoparticles with carboxylic acid combined with LOX that enhance antitumor efficacy as a synergistic effect on the repolarization of tumor-supportive M2 macrophages to tumor-suppressive M1 macrophages in a tumor microenvironment. After M2 macrophages treated with iron oxide nanoparticles were combined with LOX, the ratio of M1 macrophages was significantly greater than iron oxide nanoparticles alone or with LOX alone. It is concluded that the inhibition of cancer cell proliferation by ratio of M1 macrophages was observed. This study suggests that the iron oxide nanoparticles combined with LOX could be potentially used for potentiating immune checkpoint inhibitor therapies for cancer treatment.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
- Correspondence: ; Tel.: +886-7525-2000
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan
| | - Ming-Jung Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
| | - Chia-Chen Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
| |
Collapse
|
25
|
Cao W, Jin M, Yang K, Chen B, Xiong M, Li X, Cao G. Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy. J Nanobiotechnology 2021; 19:325. [PMID: 34656118 PMCID: PMC8520258 DOI: 10.1186/s12951-021-01074-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Chemodynamic therapy (CDT) catalyzed by transition metal and starvation therapy catalyzed by intracellular metabolite oxidases are both classic tumor treatments based on nanocatalysts. CDT monotherapy has limitations including low catalytic efficiency of metal ions and insufficient endogenous hydrogen peroxide (H2O2). Also, single starvation therapy shows limited ability on resisting tumors. The “metal-oxidase” cascade catalytic system is to introduce intracellular metabolite oxidases into the metal-based nanoplatform, which perfectly solves the shortcomings of the above-mentioned monotherapiesIn this system, oxidases can not only consume tumor nutrients to produce a “starvation effect”, but also provide CDT with sufficient H2O2 and a suitable acidic environment, which further promote synergy between CDT and starvation therapy, leading to enhanced antitumor effects. More importantly, the “metal-oxidase” system can be combined with other antitumor therapies (such as photothermal therapy, hypoxia-activated drug therapy, chemotherapy, and immunotherapy) to maximize their antitumor effects. In addition, both metal-based nanoparticles and oxidases can activate tumor immunity through multiple pathways, so the combination of the “metal-oxidase” system with immunotherapy has a powerful synergistic effect. This article firstly introduced the metals which induce CDT and the oxidases which induce starvation therapy and then described the “metal-oxidase” cascade catalytic system in detail. Moreover, we highlight the application of the “metal-oxidase” system in combination with numerous antitumor therapies, especially in combination with immunotherapy, expecting to provide new ideas for tumor treatment.
Collapse
Affiliation(s)
- Wei Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Mengyao Jin
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Kang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Bo Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Maoming Xiong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Guodong Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
26
|
Lecoeur H, Prina E, Gutiérrez-Sanchez M, Späth GF. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2021; 38:205-216. [PMID: 34666937 DOI: 10.1016/j.pt.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Intracellular parasites have evolved intricate strategies to subvert host cell functions for their own survival. These strategies are particularly damaging to the host if the infection involves immune cells, as illustrated by protozoan parasites of the genus Leishmania that thrive inside mononuclear phagocytic cells, causing devastating immunopathologies. While the impact of Leishmania infection on host cell phenotype and functions has been well documented, the regulatory mechanisms underlying host cell subversion were only recently investigated. Here we summarize the current knowledge on how Leishmania infection affects host nuclear activities and propose thought-provoking new concepts on the reciprocal relationship between epigenetic and transcriptional regulation in host cell phenotypic plasticity, its potential subversion by the intracellular parasite, and its relevance for host-directed therapy.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Maria Gutiérrez-Sanchez
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gerald F Späth
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
27
|
Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discov Today 2021; 26:2508-2514. [PMID: 34325010 DOI: 10.1016/j.drudis.2021.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
Targeted-therapy failure in treating nonsmall cell lung cancer (NSCLC) frequently occurs because of the emergence of drug resistance and genetic mutations. The same mutations also result in aerobic glycolysis, which further antagonizes outcomes by localized increases in lactate, an immune suppressor. Recent evidence indicates that enzymatic lowering of lactate can promote an oncolytic immune microenvironment within the tumour. Here, we review factors relating to lactate expression in NSCLC and the utility of lactate oxidase (LOX) for governing therapeutic delivery, its role in lactate oxidation and turnover, and relationships between lactate depletion and immune cell populations. The lactate-rich characteristic of NSCLC provides an exploitable property to potentially improve NSCLC outcomes and design new therapeutic strategies to integrate with conventional therapies.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Chia-Chen Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Scholar, YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
28
|
de Groot AE, Myers KV, Krueger TE, Kiemen AL, Nagy NH, Brame A, Torres VE, Zhang Z, Trabzonlu L, Brennen WN, Wirtz D, De Marzo AM, Amend SR, Pienta KJ. Characterization of tumor-associated macrophages in prostate cancer transgenic mouse models. Prostate 2021; 81:629-647. [PMID: 33949714 PMCID: PMC8720375 DOI: 10.1002/pros.24139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/16/2021] [Accepted: 04/11/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are critical components of the tumor microenvironment (TME) in prostate cancer. Commonly used orthotopic models do not accurately reflect the complete TME of a human patient or the natural initiation and progression of a tumor. Therefore, genetically engineered mouse models are essential for studying the TME as well as advancing TAM-targeted therapies. Two common transgenic (TG) models of prostate cancer are Hi-Myc and transgenic adenocarcinoma of the mouse prostate (TRAMP), but the TME and TAM characteristics of these models have not been well characterized. METHODS To advance the Hi-Myc and TRAMP models as tools for TAM studies, macrophage infiltration and characteristics were assessed using histopathologic, flow cytometric, and expression analyses in these models at various timepoints during tumor development and progression. RESULTS In both Hi-Myc and TRAMP models, macrophages adopt a more pro-tumor phenotype in higher histological grade tumors and in older prostate tissue. However, the Hi-Myc and TRAMP prostates differ in their macrophage density, with Hi-Myc tumors exhibiting increased macrophage density and TRAMP tumors exhibiting decreased macrophage density compared to age-matched wild type mice. CONCLUSIONS The macrophage density and the adenocarcinoma cancer subtype of Hi-Myc appear to better mirror patient tumors, suggesting that the Hi-Myc model is the more appropriate in vivo TG model for studying TAMs and TME-targeted therapies.
Collapse
Affiliation(s)
- Amber E. de Groot
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kayla V. Myers
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Timothy E.G. Krueger
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ashley L. Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD
| | - Natalia H. Nagy
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Alexandria Brame
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Vicente E. Torres
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Zhongyuan Zhang
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Levent Trabzonlu
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL
| | - W. Nathaniel Brennen
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Angelo M. De Marzo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sarah R. Amend
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kenneth J. Pienta
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
- Corresponding author,
| |
Collapse
|
29
|
Tan B, Wu Y, Wu Y, Shi K, Han R, Li Y, Qian Z, Liao J. Curcumin-Microsphere/IR820 Hybrid Bifunctional Hydrogels for In Situ Osteosarcoma Chemo- co-Thermal Therapy and Bone Reconstruction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31542-31553. [PMID: 34191477 DOI: 10.1021/acsami.1c08775] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional biomaterial-mediated osteosarcoma therapy mainly focuses on its antitumor effect yet often fails to overcome the problem of post-treatment bone tissue defect repair. Simultaneously, minimally invasive drug delivery methods are becoming spotlights for normal tissue preservation. Herein, an injectable curcumin-microsphere/IR820 coloaded hybrid methylcellulose hydrogel (Cur-MP/IR820 gel) platform was designed for osteosarcoma therapy and bone regeneration. In vitro, the K7M2wt osteosarcoma cells were eradicated by hyperthermia and curcumin. Later, the sustained release of curcumin promoted alkaline phosphatase expression and calcium deposition of bone mesenchymal stem cells. In vivo, this hybrid hydrogel could reach tumor site via injection and turned into hydrogel due to heat sensitivity. Under the irradiation of an 808 nm laser, localized hyperthermia (∼51 °C) generated in 5 min to ablate the tumor. Meanwhile, the thermal-accelerated curcumin release and thermal-increased cell membrane permeability led to tumor cell apoptosis. Tumors in photothermal-co-chemotherapy group were successfully restrained from day 2 after treatment. After that, bone reconstruction was promoted because of sustained released curcumin. The chemo-co-thermal efficacy and osteogenic capacity of Cur-MP/IR820 hydrogel suggest a promising approach to the treatment of osteosarcoma and provide provoking inspiration for treating bone tumors and repairing bone tissue.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan P. R. China
| | - Yiling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
30
|
Zhou M, Wang C, Lu S, Xu Y, Li Z, Jiang H, Ma Y. Tumor-associated macrophages in cholangiocarcinoma: complex interplay and potential therapeutic target. EBioMedicine 2021; 67:103375. [PMID: 33993051 PMCID: PMC8134032 DOI: 10.1016/j.ebiom.2021.103375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive and multifactorial malignancy of the biliary tract. The carcinogenesis of CCA is associated with genomic and epigenetic abnormalities, as well as environmental effects. However, early clinical diagnosis and reliable treatment strategies of CCA remain unsatisfactory. Multiple compartments of the tumor microenvironment significantly affect the progression of CCA. Tumor-associated macrophages (TAMs) are a type of plastic immune cells that are recruited and activated in the CCA microenvironment, especially at the tumor invasive front and perivascular sites. TAMs create a favorable environment that benefits CCA growth by closely interacting with CCA cells and other stromal cells via releasing multiple protumor factors. In addition, TAMs exert immunosuppressive and antichemotherapeutic effects, thus intensifying the malignancy. Targeting TAMs may provide an improved understanding of, and novel therapeutic approaches for, CCA. This review focuses on revealing the interplay between TAMs and CCA.
Collapse
Affiliation(s)
- Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zihao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
31
|
LDL receptors and their role in targeted therapy for glioma: a review. Drug Discov Today 2021; 26:1212-1225. [PMID: 33609780 DOI: 10.1016/j.drudis.2021.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/15/2021] [Accepted: 02/06/2021] [Indexed: 11/22/2022]
Abstract
Gliomas are highly lethal forms of cancers occurring in the brain. Delivering the drugs into the brain is a major challenge to the treatment of gliomas because of the highly selectively permeable blood-brain barrier (BBB). Tapping the potential of receptor-mediated drug delivery systems using targeted nanoparticles (NPs) is a sought-after step forward toward successful glioma treatment. Several receptors are the focus of research for application in drug delivery. Low-density lipoprotein receptors (LDLR) are abundantly expressed in both healthy brains and diseased brains with a disrupted BBB. In this review, we discuss the LDLR and the types of NPs that have been used to target the brain via this receptor.
Collapse
|
32
|
Zhang Y, Jiang C. Postoperative cancer treatments: In-situ delivery system designed on demand. J Control Release 2021; 330:554-564. [PMID: 33359583 DOI: 10.1016/j.jconrel.2020.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
The keys to the prevention of tumor recurrence after operation are the elimination of residual tumor cells and the reversal of microenvironments that induce recurrence. In the formulation of a treatment scheme, building an appropriate drug delivery system is essential. An in-situ drug delivery system (ISDDS) is regarded as an effective treatment route for postoperative use that increases drug delivery efficiency and mitigates side-effects. ISDDS technology has been considerably improved through a clearer understanding of the mechanisms of postoperative recurrence and the development of drug delivery materials. This paper describes the initiation and characteristics of postoperative recurrence mechanisms. Based on this information, design principles for ISDDS are proposed, and a variety of practical drug delivery systems that fulfil specific therapeutic needs are presented. Challenges and future opportunities related to the application of in-situ drug carriers for inhibiting cancer recurrence are also discussed.
Collapse
Affiliation(s)
- Yiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
33
|
Lactic Acid and an Acidic Tumor Microenvironment suppress Anticancer Immunity. Int J Mol Sci 2020; 21:ijms21218363. [PMID: 33171818 PMCID: PMC7664620 DOI: 10.3390/ijms21218363] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/18/2023] Open
Abstract
Immune evasion and altered metabolism, where glucose utilization is diverted to increased lactic acid production, are two fundamental hallmarks of cancer. Although lactic acid has long been considered a waste product of this alteration, it is now well accepted that increased lactic acid production and the resultant acidification of the tumor microenvironment (TME) promotes multiple critical oncogenic processes including angiogenesis, tissue invasion/metastasis, and drug resistance. We and others have hypothesized that excess lactic acid in the TME is responsible for suppressing anticancer immunity. Recent studies support this hypothesis and provide mechanistic evidence explaining how lactic acid and the acidic TME impede immune cell functions. In this review, we consider lactic acid’s role as a critical immunoregulatory molecule involved in suppressing immune effector cell proliferation and inducing immune cell de-differentiation. This results in the inhibition of antitumor immune responses and the activation of potent, negative regulators of innate and adaptive immune cells. We also consider the role of an acidic TME in suppressing anticancer immunity. Finally, we provide insights to help translate this new knowledge into impactful anticancer immune therapies.
Collapse
|
34
|
Liao ZX, Huang KY, Kempson IM, Li HJ, Tseng SJ, Yang PC. Nanomodified strategies to overcome EGFR-tyrosine kinase inhibitors resistance in non-small cell lung cancer. J Control Release 2020; 324:482-492. [PMID: 32497570 DOI: 10.1016/j.jconrel.2020.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer is the primary cause of cancer-related death worldwide. 85%-90% of cases are non-small cell lung cancer (NSCLC) which characteristically exhibits altered epidermal growth factor receptor (EGFR) signaling is a major driver pathway. Unfortunately, therapeutic outcomes in treating NSCLC are compromised by the emergence of drug resistance in response to EGFR-tyrosine kinase inhibitor (TKI) targeted therapy due to the acquired resistance mutation EGFR T790M or activation of alternative pathways. There is current need for a new generation of TKIs to be developed to treat EGFR-TKI-resistant NSCLC. To overcome the above problems and improve clinical efficacy, nanotechnology with targeting abilities and sustained release has been proposed for EGFR-TKI-resistant NSCLC treatment and has already achieved success in in vitro or in vivo models. In this review, we summarize and illustrate representative nano-formulations targeting EGFR-TKI-resistant NSCLC. The described advances may pave the way to better understanding and design of nanocarriers and multifunctional nanosystems for efficient treatment for drug resistant NSCLC.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kuo-Yen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Scholar, YongLin Institute of Health, National Taiwan University, Taipei 10672, Taiwan.
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; The Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan.
| |
Collapse
|