1
|
Lu Y, Jiang X, Yang B, Ding M, Shen Y, Jin J, Yu J, Lu W, Chen Y, Zhu S. Comparative Study on Covalent and Noncovalent Endogenous Albumin-Binding β-Glucuronidase-Activated SN38 Prodrugs for Antitumor Efficacy. J Med Chem 2025; 68:8361-8376. [PMID: 40189819 DOI: 10.1021/acs.jmedchem.4c03096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Albumin-binding prodrugs have been explored to overcome the limitations of small-molecule anticancer chemotherapy agents, such as inadequate physiological and pharmaceutical compatibility, as well as rapid renal clearance. Herein, we investigated two endogenous albumin-binding prodrugs, M-g-SN38 and S-g-SN38, forming macromolecular conjugates. Both prodrugs exhibited robust stability in murine and human plasma, crucial for their therapeutic potential. Selective activation by β-glucuronidase ensures minimal toxicity in their inactive state. Notably, M-g-SN38 exhibited higher cellular uptake, a longer circulation half-life, and enhanced tumor accumulation compared to S-g-SN38, suggesting its greater potential for improved antitumor efficacy. In vivo, M-g-SN38 exhibited significant antitumor activity, leading to profound tumor reduction and, in many cases, marked depletion and complete eradication in all treated mice in the HCT116 xenograft model. Furthermore, M-g-SN38 also demonstrated pronounced antitumor efficacy in the BxPC-3 xenograft model. Together, these findings provide new insights for the development of albumin-binding prodrugs.
Collapse
Affiliation(s)
- Yingxin Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Xing Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Biyu Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yanyan Shen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jiyu Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, PR China
| | - Shulei Zhu
- Innovation Center for AI and Drug Discovery, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
- ATLATL Innovation Center, 1077 Zhangheng Road, Shanghai 201203, PR China
| |
Collapse
|
2
|
Yang B, Shan C, Song X, Lv X, Long Y, Zeng D, An R, Lan X, Gai Y. Development and evaluation of albumin binder-conjugated heterodimeric radiopharmaceuticals targeting integrin α vβ 3 and CD13 for cancer therapy. Eur J Nucl Med Mol Imaging 2024; 51:3334-3345. [PMID: 38787395 DOI: 10.1007/s00259-024-06766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The advancement of heterodimeric tracers, renowned for their high sensitivity, marks a significant trend in the development of radiotracers for cancer diagnosis. Our prior work on [68Ga]Ga-HX01, a heterodimeric tracer targeting CD13 and integrin αvβ3, led to its approval for phase I clinical trials by the China National Medical Production Administration (NMPA). However, its fast clearance and limited tumor retention pose challenges for broader clinical application in cancer treatment. This study aims to develop a new radiopharmaceutical with increased tumor uptake and prolonged retention, rendering it a potential therapeutic candidate. METHODS New albumin binder-conjugated compounds were synthesized based on the structure of HX01. In vitro and in vivo evaluation of these new compounds were performed after labelling with 68Ga. Small-animal PET/CT imaging were conducted at different time points at 0.5-6 h post injection (p.i.) using BxPC-3 xenograft mice models. The one with the best imaging performance was further radiolabeled with 177Lu for small-animal SPECT/CT and ex vivo biodistribution investigation. RESULTS We have synthesized novel albumin binder-conjugated compounds, building upon the structure of HX01. When radiolabeled with 68Ga, all compounds demonstrated improved pharmacokinetics (PK). Small-animal PET/CT studies revealed that these new albumin binder-conjugated compounds, particularly [68Ga]Ga-L6, exhibited significantly enhanced tumor accumulation and retention compared with [68Ga]Ga-L0 without an albumin binder. [68Ga]Ga-L6 outperformed [68Ga]Ga-L7, a compound developed using a previously reported albumin binder. Furthermore, [177Lu]Lu-L6 demonstrated rapid clearance from normal tissues, high tumor uptake, and prolonged retention in small-animal SPECT/CT and biodistribution studies, positioning it as an ideal candidate for radiotherapeutic applications. CONCLUSION A new integrin αvβ3 and CD13 targeting compound was screened out. This compound bears a novel albumin binder and exhibits increased tumor uptake and prolonged tumor retention in BxPC-3 tumors and low background in normal organs, making it a perfect candidate for radiotherapy when radiolabeled with 177Lu.
Collapse
Affiliation(s)
- Biao Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Changyu Shan
- Hexin (Suzhou) Pharmaceutical Technology Co., Ltd, Taicang City, 215421, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Dexing Zeng
- Hexin (Suzhou) Pharmaceutical Technology Co., Ltd, Taicang City, 215421, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
3
|
Lee JH, Lim H, Ma G, Kweon S, Park SJ, Seo M, Lee JH, Yang SB, Jeong HG, Park J. Nano-anticoagulant based on carrier-free low molecular weight heparin and octadecylamine with an albumin shuttling effect. Nat Commun 2024; 15:6769. [PMID: 39117649 PMCID: PMC11310394 DOI: 10.1038/s41467-024-50819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Low-molecular-weight heparin (LMWH), derived from unfractionated heparin (UFH), has enhanced anticoagulant efficacy, long duration of action, and extended half-life. Patients receiving LMWH for preventive therapies would strongly benefit from its long-term effects, however, achieving this is challenging. Here, we design and evaluate a nanoengineered LMWH and octadecylamine conjugate (LMHO) that can act for a long time while maintaining close to 97 ± 3% of LMWH activity via end-specific conjugation of the reducing end of LMWH. LMHO can self-assemble into nanoparticles with an average size of 105 ± 1.7 nm in water without any nanocarrier and can be combined with serum albumin, resulting in a lipid-based albumin shuttling effect. Such molecules can circulate in the bloodstream for 4-5 days. We corroborate the self-assembly capability of LMHO and its interaction with albumin through molecular dynamics (MD) simulations and transmission electron microscopy (TEM) analysis. This innovative approach to carrier-free polysaccharide delivery, enhanced by nanoengineered albumin shuttling, represents a promising platform to address limitations in conventional therapies.
Collapse
Affiliation(s)
- Jae-Hyeon Lee
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Hansol Lim
- Department of Applied Life Science, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Gaeun Ma
- Department of Applied Life Science, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| | - Seong Jin Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Minho Seo
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Jun-Hyuck Lee
- Department of Applied Life Science, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Seong-Bin Yang
- Department of Applied Life Science, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Han-Gil Jeong
- Division of Neurocritical Care, Department of Neurosurgery and Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Jooho Park
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Seoul, Republic of Korea.
- Department of Applied Life Science, BK21 Program, Konkuk University, Chungju, Republic of Korea.
| |
Collapse
|
4
|
Jang P, Ser J, Cardenas K, Kim HJ, Hickey M, Jang J, Gladstone J, Bailey A, Dinh J, Nguyen V, DeMarco E, Srinivas S, Kang H, Kashiwagi S, Bao K, Yamashita A, Choi HS. HSA-ZW800-PEG for Enhanced Optophysical Stability and Tumor Targeting. Int J Mol Sci 2023; 25:559. [PMID: 38203730 PMCID: PMC10779243 DOI: 10.3390/ijms25010559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Small molecule fluorophores often face challenges such as short blood half-life, limited physicochemical and optical stability, and poor pharmacokinetics. To overcome these limitations, we conjugated the zwitterionic near-infrared fluorophore ZW800-PEG to human serum albumin (HSA), creating HSA-ZW800-PEG. This conjugation notably improves chemical, physical, and optical stability under physiological conditions, addressing issues commonly encountered with small molecules in biological applications. Additionally, the high molecular weight and extinction coefficient of HSA-ZW800-PEG enhances biodistribution and tumor targeting through the enhanced permeability and retention effect. The unique distribution and elimination dynamics, along with the significantly extended blood half-life of HSA-ZW800-PEG, contribute to improved tumor targetability in both subcutaneous and orthotopic xenograft tumor-bearing animal models. This modification not only influences the pharmacokinetic profile, affecting retention time and clearance patterns, but also enhances bioavailability for targeting tissues. Our study guides further development and optimization of targeted imaging agents and drug-delivery systems.
Collapse
Affiliation(s)
- Paul Jang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Jinhui Ser
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kevin Cardenas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Hajin Joanne Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Morgan Hickey
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Jiseon Jang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Jason Gladstone
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Aisha Bailey
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Jason Dinh
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Vy Nguyen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Emma DeMarco
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Surbhi Srinivas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Atsushi Yamashita
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02119, USA; (P.J.); (J.S.)
| |
Collapse
|
5
|
Steiner ST, Maisuls I, Junker A, Fritz G, Faust A, Strassert CA. Concerning the photophysics of fluorophores towards tailored bioimaging compounds: a case study involving S100A9 inflammation markers. Photochem Photobiol Sci 2023; 22:2093-2104. [PMID: 37303026 DOI: 10.1007/s43630-023-00432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
A full understanding concerning the photophysical properties of a fluorescent label is crucial for a reliable and predictable performance in biolabelling applications. This holds true not only for the choice of a fluorophore in general, but also for the correct interpretation of data, considering the complexity of biological environments. In the frame of a case study involving inflammation imaging, we report the photophysical characterization of four fluorescent S100A9-targeting compounds in terms of UV-vis absorption and photoluminescence spectroscopy, fluorescence quantum yields (ΦF) and excited state lifetimes (τ) as well as the evaluation of the radiative and non-radiative rate constants (kr and knr, respectively). The probes were synthesized based on a 2-amino benzimidazole-based lead structure in combination with commercially available dyes, covering a broad color range from green (6-FAM) over orange (BODIPY-TMR) to red (BODIPY-TR) and near-infrared (Cy5.5) emission. The effect of conjugation with the targeting structure was addressed by comparison of the probes with their corresponding dye-azide precursors. Additionally, the 6-FAM and Cy5.5 probes were measured in the presence of murine S100A9 to determine whether protein binding influences their photophysical properties. An interesting rise in ΦF upon binding of 6-FAM-SST177 to murine S100A9 enabled the determination of its dissociation equilibrium constant, reaching up to KD = 324 nM. This result gives an outlook for potential applications of our compounds in S100A9 inflammation imaging and fluorescence assay developments. With respect to the other dyes, this study demonstrates how diverse microenvironmental factors can severely impair their performance while rendering them poor performers in biological media, showing that a preliminary photophysical screening is key to assess the suitability of a particular luminophore.
Collapse
Affiliation(s)
- Simon T Steiner
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
- Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149, Münster, Germany
| | - Anna Junker
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Günter Fritz
- Cellular Microbiology, Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany.
- Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149, Münster, Germany.
| |
Collapse
|
6
|
Li C, Zhang D, Pan Y, Chen B. Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers (Basel) 2023; 15:3354. [PMID: 37631411 PMCID: PMC10459149 DOI: 10.3390/polym15163354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
With the success of several clinical trials of products based on human serum albumin (HSA) and the rapid development of nanotechnology, HSA-based nanodrug delivery systems (HBNDSs) have received extensive attention in the field of nanomedicine. However, there is still a lack of comprehensive reviews exploring the broader scope of HBNDSs in biomedical applications beyond cancer therapy. To address this gap, this review takes a systematic approach. Firstly, it focuses on the crystal structure and the potential binding sites of HSA. Additionally, it provides a comprehensive summary of recent progresses in the field of HBNDSs for various biomedical applications over the past five years, categorized according to the type of therapeutic drugs loaded onto HSA. These categories include small-molecule drugs, inorganic materials and bioactive ingredients. Finally, the review summarizes the characteristics and current application status of HBNDSs in drug delivery, and also discusses the challenges that need to be addressed for the clinical transformation of HSA formulations and offers future perspectives in this field.
Collapse
Affiliation(s)
- Changyong Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Dagui Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Yujing Pan
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Biaoqi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
7
|
Yang Y, Li X, Song J, Li L, Ye Q, Zuo S, Liu T, Dong F, Liu X, He Z, Sun B, Sun J. Structure-Activity Relationship of pH-Sensitive Doxorubicin-Fatty Acid Prodrug Albumin Nanoparticles. NANO LETTERS 2023; 23:1530-1538. [PMID: 36719151 DOI: 10.1021/acs.nanolett.2c04976] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Albumin has emerged as a versatile drug carrier. To harness albumin as a carrier for doxorubicin (DOX), we synthesized three acid-labile DOX prodrugs using stearic acid (SA), oleic acid (OA), and linoleic acid (LA) as the albumin-binding motif, respectively. Different from conventional albumin nanodrugs (such as Abraxane, with a drug loading of 10%), the DOX prodrugs assembled albumin nanoparticles (NPs) have an ultrahigh drug loading (>35%). Noteworthy, we demonstrated that the saturation of fatty acids exerted great influence on colloidal stability of prodrug NPs, thus affecting their in vivo pharmacokinetics, tumor accumulation and antitumor efficacy. Furthermore, the hydrazone bond-bridged DOX prodrugs could remain intact in the bloodstream but allow DOX to be released in the acidic tumor environment, resulting in improved antitumor efficacy and safety. Our work gives novel insights into the structure-to-efficacy relationship of albumin-bound fatty acid prodrugs and provides a simple strategy for advanced albumin-bound nanomedicines.
Collapse
Affiliation(s)
- Yinxian Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuhong Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fudan Dong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohong Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Yang SB, Lee DN, Lee JH, Seo M, Shin DW, Lee S, Lee YH, Park J. Design and Evaluation of a Carrier-Free Prodrug-Based Palmitic-DEVD-Doxorubicin Conjugate for Targeted Cancer Therapy. Bioconjug Chem 2023; 34:333-344. [PMID: 36735902 DOI: 10.1021/acs.bioconjchem.2c00490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the development of new drugs, typical polymer- or macromolecule-based nanocarriers suffer from manufacturing process complexity, unwanted systematic toxicity, and low loading capacity. However, carrier-free nanomedicines have made outstanding progress in drug delivery and pharmacokinetics, demonstrating most of the advantages associated with nanoparticles when applied in targeted anticancer therapy. Here, to overcome the problems of nanocarriers and conventional cytotoxic drugs, we developed a novel, carrier-free, self-assembled prodrug consisting of a hydrophobic palmitic (16-carbon chain n-hexadecane chain) moiety and hydrophilic group (or moiety) which is included in a caspase-3-specific cleavable peptide (Asp-Glu-Val-Asp, DEVD) and a cytotoxic drug (doxorubicin, DOX). The amphiphilic conjugate, the palmitic-DEVD-DOX, has the ability to self-assemble into nanoparticles in saline without the need for any carriers or nanoformulations. Additionally, the inclusion of doxorubicin is in its prodrug form and the apoptosis-specific DEVD peptide lead to the reduced side effects of doxorubicin in normal tissue. Furthermore, the carrier-free palmitic-DEVD-DOX nanoparticles could passively accumulate in the tumor tissues of tumor-bearing mice due to an enhanced permeation and retention (EPR) effect. As a result, the palmitic-DEVD-DOX conjugate showed an enhanced therapeutic effect compared with the unmodified DEVD-DOX conjugate. Therefore, this carrier-free palmitic-DEVD-DOX prodrug has great therapeutic potential to treat solid tumors, overcoming the problems of conventional chemotherapy and nanoparticles.
Collapse
Affiliation(s)
- Seong-Bin Yang
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Nyeong Lee
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Jun-Hyuck Lee
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Minho Seo
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Seokwoo Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea.,Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea.,Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
9
|
Zhang M, Ma H, Wang X, Yu B, Cong H, Shen Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J Control Release 2023; 354:167-187. [PMID: 36581260 DOI: 10.1016/j.jconrel.2022.12.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Polysaccharide-based nanocarriers (PBNs) are the focus of extensive investigation because of their biocompatibility, low cost, wide availability, and chemical versatility, which allow a wide range of anticancer agents to be loaded within the nanocarriers. Similar to other nanocarriers, most PBNs are designed to extravasate out of tumor vessels, depending on the enhanced permeability and retention (EPR) effect. However, the EPR effect is compromised in some tumors due to the heterogeneity of tumor structures. Transvascular transport efficacy is decreased by complex blood vessels and condensed tumor stroma. The limited extravasation impedes efficient drug delivery into tumor parenchyma, and thus affects the subsequent tumor accumulation, which hinders the therapeutic effect of PBNs. Therefore, overcoming the biological barriers that restrict extravasation from tumor vessels is of great importance in PBN design. Many strategies have been developed to enhance the EPR effect that involve nanocarrier property regulation and tumor structure remodeling. Moreover, some researchers have proposed active transcytosis pathways that are complementary to the paracellular EPR effect to increase the transvascular extravasation efficiency of PBNs. In this review, we summarize the recent advances in the design of PBNs with enhanced transvascular transport to enable optimization of PBNs in the extravasation of the drug delivery process. We also discuss the obstacles and challenges that need to be addressed to clarify the transendothemial mechanism of PBNs and the potential interactions between extravasation and other drug delivery steps.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - He Ma
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xijie Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Imaging of Indocyanine Green-Human Serum Albumin (ICG-HSA) Complex in Secreted Protein Acidic and Rich in Cysteine (SPARC)-Expressing Glioblastoma. Int J Mol Sci 2023; 24:ijms24010850. [PMID: 36614294 PMCID: PMC9821702 DOI: 10.3390/ijms24010850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma is the most common and fatal primary glioma and has a severe prognosis. It is a challenge for neurosurgeons to remove brain tumor tissues completely by resection. Meanwhile, fluorescence-guided surgery (FGS) is a technique used in glioma surgery to enhance the visualization of tumor edges to clarify the extent of tumor resection. Indocyanine green (ICG) is the only FDA-approved NIR fluorescent agent. It non-covalently binds to human serum albumin (HSA). Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein expressed in gliomas and binds to albumin, suggesting that it plays an important role in tumor uptake of the ICG-HSA complex. Here we demonstrate the binding properties of HSA or SPARC to ICG using surface plasmon resonance and saturation binding assay. According to in vitro and in vivo studies, the results showed that the uptake of ICG-HSA complex was higher in SPARC-expressing glioblastoma cell line and tumor region compared with the uptake of free ICG. Here, we visualized the SPARC-dependent uptake of ICG and ICG-HSA complex in U87MG. Our results demonstrated that the ICG-HSA complex is likely to be used as an efficient imaging agent targeting SPARC-expressing tumors, especially glioblastoma.
Collapse
|
11
|
Peptide-Based Bioconjugates and Therapeutics for Targeted Anticancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14071378. [PMID: 35890274 PMCID: PMC9320687 DOI: 10.3390/pharmaceutics14071378] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
With rapidly growing knowledge in bioinformatics related to peptides and proteins, amino acid-based drug-design strategies have recently gained importance in pharmaceutics. In the past, peptide-based biomedicines were not widely used due to the associated severe physiological problems, such as low selectivity and rapid degradation in biological systems. However, various interesting peptide-based therapeutics combined with drug-delivery systems have recently emerged. Many of these candidates have been developed for anticancer therapy that requires precisely targeted effects and low toxicity. These research trends have become more diverse and complex owing to nanomedicine and antibody–drug conjugates (ADC), showing excellent therapeutic efficacy. Various newly developed peptide–drug conjugates (PDC), peptide-based nanoparticles, and prodrugs could represent a promising therapeutic strategy for patients. In this review, we provide valuable insights into rational drug design and development for future pharmaceutics.
Collapse
|
12
|
Yang Y, Fischer NH, Oliveira MT, Hadaf GB, Liu J, Brock-Nannestad T, Diness F, Lee JW. Carbon dioxide enhances sulphur-selective conjugate addition reactions. Org Biomol Chem 2022; 20:4526-4533. [PMID: 35605989 DOI: 10.1039/d2ob00831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulphur-selective conjugate addition reactions play a central role in synthetic chemistry and chemical biology. A general tool for conjugate addition reactions should provide high selectivity in the presence of competing nucleophilic functional groups, namely nitrogen nucleophiles. We report CO2-mediated chemoselective S-Michael addition reactions where CO2 can reversibly control the reaction pHs, thus providing practical reaction conditions. The increased chemoselectivity for sulphur-alkylation products was ascribed to CO2 as a temporary and traceless protecting group for nitrogen nucleophiles, while CO2 efficiently provide higher conversion and selectivity sulphur nucleophiles on peptides and human serum albumin (HSA) with various electrophiles. This method offers simple reaction conditions for cysteine modification reactions when high chemoselectivity is required.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Niklas Henrik Fischer
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Gul Barg Hadaf
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Jian Liu
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Theis Brock-Nannestad
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Frederik Diness
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Ji-Woong Lee
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| |
Collapse
|
13
|
Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022; 185:114237. [PMID: 35364124 PMCID: PMC9117484 DOI: 10.1016/j.addr.2022.114237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States; Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States; Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
14
|
Dong L, Li N, Wei X, Wang Y, Chang L, Wu H, Song L, Guo K, Chang Y, Yin Y, Pan M, Shen Y, Wang F. A Gambogic Acid-Loaded Delivery System Mediated by Ultrasound-Targeted Microbubble Destruction: A Promising Therapy Method for Malignant Cerebral Glioma. Int J Nanomedicine 2022; 17:2001-2017. [PMID: 35535034 PMCID: PMC9078874 DOI: 10.2147/ijn.s344940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Background Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Lei Dong
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Xixi Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Yongling Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Liansheng Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Liujiang Song
- Department of Ophthalmology, Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA
| | - Kang Guo
- Department of Oncology, The Third affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Yaling Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Min Pan
- Department of Ultrasound, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518034, People’s Republic of China
- Min Pan, Department of Ultrasound, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, No. 6001 Beihuan Avenue, Shenzhen, 518034, People’s Republic of China, Email
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
- Correspondence: Feng Wang, Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453002, People’s Republic of China, Email
| |
Collapse
|
15
|
Abstract
Magnetic nanoparticles (MNPs) have great potential in biochemistry and medical science. In particular, iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications due to their high magnetic properties, large surface area, stability, and easy functionalization. However, colloidal stability, biocompatibility, and potential toxicity of MNPs in physiological environments are crucial for their in vivo application. In this context, many research articles focused on the possible procedures for MNPs coating to improve their physic-chemical and biological properties. This review highlights one viable fabrication strategy of biocompatible iron oxide nanoparticles using human serum albumin (HSA). HSA is mainly a transport protein with many functions in various fundamental processes. As it is one of the most abundant plasma proteins, not a single drug in the blood passes without its strength test. It influences the stability, pharmacokinetics, and biodistribution of different drug-delivery systems by binding or forming its protein corona on the surface. The development of albumin-based drug carriers is gaining increasing importance in the targeted delivery of cancer therapy. Considering this, HSA is a highly potential candidate for nanoparticles coating and theranostics area and can provide biocompatibility, prolonged blood circulation, and possibly resolve the drug-resistance cancer problem.
Collapse
|
16
|
Xu P, Hu L, Yu C, Yang W, Kang F, Zhang M, Jiang P, Wang J. Unsymmetrical cyanine dye via in vivo hitchhiking endogenous albumin affords high-performance NIR-II/photoacoustic imaging and photothermal therapy. J Nanobiotechnology 2021; 19:334. [PMID: 34689764 PMCID: PMC8543934 DOI: 10.1186/s12951-021-01075-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Herein, an unprecedented synergistic strategy for the development of high-performance NIR-II fluorophore is proposed and validated. Based on an unsymmetrical cyanine dye design strategy, the NIR-II emissive dye NIC was successfully developed by replacing only one of the indoline donors of symmetrical cyanine dye ICG with a fully conjugated benz[c,d]indole donor. This minor structural change maximally maintains the high extinction coefficient advantage of cyanine dyes. NIC-ER with endogenous albumin-hitchhiking capability was constructed to further enhance its in vivo fluorescence brightness. In the presence of HSA (Human serum albumin), NIC-ER spontaneously resides in the albumin pocket, and a brilliant ~89-fold increase in fluorescence was observed. Due to its high molar absorptivity and moderate quantum yield, NIC-ER in HSA exhibits bright NIR-II emission with high photostability and significant Stokes shift (>110 nm). Moreover, NIC-ER was successfully employed for tumor-targeted NIR-II/PA imaging and efficient photothermal tumor elimination. Overall, our strategy may open up a new avenue for designing and constructing high-performance NIR-II fluorophores. ![]()
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China.,Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Linan Hu
- Departments of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Cheng Yu
- Departments of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China.
| |
Collapse
|
17
|
Um W, E. K. PK, Lee J, Kim CH, You DG, Park JH. Recent advances in nanomaterial-based augmented sonodynamic therapy of cancer. Chem Commun (Camb) 2021; 57:2854-2866. [DOI: 10.1039/d0cc07750j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on recent advances in augmented sonodynamic therapy (SDT) using engineered nanomaterials, and the mechanism of SDT for discussing future perspectives.
Collapse
Affiliation(s)
- Wooram Um
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Pramod Kumar E. K.
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Seoul
- Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Dong Gil You
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon
- Republic of Korea
| |
Collapse
|
18
|
Hao L, Zhou Q, Piao Y, Zhou Z, Tang J, Shen Y. Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. J Control Release 2020; 330:362-371. [PMID: 33359484 DOI: 10.1016/j.jconrel.2020.12.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Albumin-based nanomedicines are important nanoplatforms for cancer drug delivery. The drugs are either physically encapsulated or covalently conjugated to albumin or albumin-based nanosystems. Physical encapsulation is advantageous due to requiring no chemical modification of drug molecules, but many drugs, for instance, camptothecin (CPT) and curcumin (CCM), though very hydrophobic, can't be loaded in or form nanoformulations with albumin. Herein, we demonstrate prodrugs readily binding to proteins via iminoboronates and forming nanoparticles for cancer drug delivery. CPT and CCM were functionalized with 2-acetylphenylboronic acid (2-APBA) to produce prodrugs CPT-SS-APBA and CCM- APBA. The prodrugs bound to bovine serum albumin (BSA) via formation of iminoboronates and the produced BSA/prodrug readily self-assembled into well-defined nanoparticles with high loading efficiency, improved colloidal stability, and much-improved pharmacokinetics. The nanoparticles effectively released drugs in the intracellular acidic environment or the cytosol rich in glutathione (GSH). In vivo, the nanoparticles showed enhanced anticancer efficacy compared with clinically used irinotecan or sorafenib in subcutaneous 4 T1 or HepG2 tumor models. This work demonstrates a versatile protein-binding prodrug platform applicable to protein-based drug formulations and even antibody-drug conjugates.
Collapse
Affiliation(s)
- Lingqiao Hao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Quan Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Ying Piao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.
| |
Collapse
|
19
|
Abdallah M, Müllertz OO, Styles IK, Mörsdorf A, Quinn JF, Whittaker MR, Trevaskis NL. Lymphatic targeting by albumin-hitchhiking: Applications and optimisation. J Control Release 2020; 327:117-128. [PMID: 32771478 DOI: 10.1016/j.jconrel.2020.07.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
The lymphatic system plays an integral role in the development and progression of a range of disease conditions, which has impelled medical researchers and clinicians to design, develop and utilize advanced lymphatic drug delivery systems. Following interstitial administration, most therapeutics and molecules are cleared from tissues via the draining blood capillaries. Macromolecules and delivery systems >20 kDa in size or 10-100 nm in diameter are, however, transported from the interstitium via draining lymphatic vessels as they are too large to cross the blood capillary endothelium. Lymphatic uptake of small molecules can be promoted by two general approaches: administration in association with synthetic macromolecular constructs, or through hitchhiking on endogenous cells or macromolecular carriers that are transported from tissues via the lymphatics. In this paper we review the latter approach where molecules are targeted to lymph by hitchhiking on endogenous albumin transport pathways after subcutaneous, intramuscular or intradermal injection. We describe the properties of the lymphatic system and albumin that are relevant to lymphatic targeting, the characteristics of drugs and delivery systems designed to hitchhike on albumin trafficking pathways and how to further optimise these properties, and finally the current applications and potential future directions for albumin-hitchhiking approaches to target the lymphatics.
Collapse
Affiliation(s)
- Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Olivia O Müllertz
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Alexander Mörsdorf
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia.
| |
Collapse
|
20
|
Sun IC, Yoon HY, Lim DK, Kim K. Recent Trends in In Situ Enzyme-Activatable Prodrugs for Targeted Cancer Therapy. Bioconjug Chem 2020; 31:1012-1024. [DOI: 10.1021/acs.bioconjchem.0c00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|