1
|
Jaroniek P, Brzeziński M, Chmiela M, Gonciarz W. Doxorubicin loaded polylactide nanoparticles functionalized histamine promote apoptosis of human gastric cancer cells AGS. Sci Rep 2025; 15:14243. [PMID: 40274948 DOI: 10.1038/s41598-025-99004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Gastric cancer is a dominating cause of cancer-related deaths in the world. The modern perspective in gastric cancer treatment is the application of nanoparticles (NPs) affecting the growth of cancer cells to increase the effectiveness of anti-tumor therapy. The use of advanced nanosystems that deliver anti-cancer drugs and biologically active substances may strongly rely on the expression of cancer-associated targets. The aim of this study was to examine the synergistic effect of doxorubicin (DOX) and histamine (His) in NPs DOX-loaded composed of poly(lactic) acid -PLA with histamine end groups (NPs-His-DOX) towards human gastric cancer cells (AGS) in vitro in conjunction with increasing oxidative stress, DNA damage, and cell apoptosis, as well as diminishing cell proliferation. The influence of studied NPs on the expression of intracellular adhesion molecule (ICAM)-1, which may facilitate the cytotoxic reaction of lymphocytes against gastric cancer cells, has also been determined. We showed a significant (p < 0.05) synergistic effect of His and DOX in the NPs His-DOX in increasing oxidative stress as demonstrated by an increased level of 4-hydroxynonenal (4HNE), DNA damage, cell apoptosis, in conjunction with a significant (p < 0.05) inhibition of cell proliferation as well as the disintegration of the cell monolayer. Furthermore, NPs His-DOX upregulated a cell deposition of ICAM-1. This study shows that NPs His-DOX facilitates the delivery of the anticancer drug DOX into the milieu of cancer cells, which results in increased cell death. Furthermore, upregulation of ICAM-1 on gastric cancer cells may increase anti-tumor cytotoxic activity of immunocompetent cells.
Collapse
Affiliation(s)
- Patrycja Jaroniek
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Matejki Street 21/23, 90-237, Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Street 112, 90-363, Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
2
|
Prasannatha B, Ganivada MN, Nalla K, Kanade SR, Jana T. Hierarchical Structures of Amino Acid Derived Polyhydroxyurethanes: Promising Candidates as Drug Carriers and Cell Adhesive Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:7719-7729. [PMID: 39495894 DOI: 10.1021/acsabm.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this study, we examined the self-assembly of a series of biodegradable and biocompatible amino acid-based polyhydroxyurethanes (PHUs), investigating the structural influence of these polymers on their self-assembly and the resulting morphological features. The presence of hydrophilic and hydrophobic segments, along with carbonyl urethane, ester, and hydroxyl groups in the PHU backbone, facilitates intermolecular hydrogen bonding, enabling the formation of self-assemblies with hierarchical nanodimensional morphologies. We determined the critical aggregation concentration (CAC) and found that it largely depends on the PHU's structure. In-depth morphological studies demonstrated that the evolution of morphology proceeds in four steps: (1) the initial formation of micelles, which act as seeds at very low concentrations, (2) the elongation of these micelles into nanorod or nanopalette shapes below the CAC range, (3) the epitaxial growth of nanofibers at the CAC, and (4) the complete formation of fibrous mats above the CAC. Additionally, these hierarchical structures were utilized for the encapsulation and release of the drug doxorubicin (DOX). We observed that 75% of the encapsulated DOX was readily released in a mildly acidic environment, similar to the physiological conditions of cancer cells. Cellular uptake studies confirmed the effective uptake of the drug-loaded nanoassemblies into the cytoplasm of cells. Our studies also confirmed that these self-assembled structures can serve as effective cell adhesive scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Santosh Raja Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
3
|
Rananaware P, Bauri S, Keri R, Mishra M, Brahmkhatri V. Polymeric curcumin nanospheres for lysozyme aggregation inhibition, antibacterial, and wound healing applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46625-46640. [PMID: 37688693 DOI: 10.1007/s11356-023-29160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
The present study reports highly stable polymeric nanoparticles comprising curcumin and polyvinylpyrrolidone, and then conjugated with gold nanoparticles, resulting in C-PVP and C-PVP-Au, respectively. The synthesized conjugates C-PVP and C-PVP-Au were investigated for amyloid aggregation inhibition activity, antimicrobial activity, and wound healing applications. The anti-amyloidogenic capacity of nanoconjugates were studied for model protein, hen egg-white lysozyme (HEWL). The ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates suppress fibrillogenesis in HEWL. The highest amyloid inhibition activity obtained against C-PVP and C-PVP-Au was 31 μg.mL-1 and 30 μg.mL-1, respectively. The dissociation activity for amyloid aggregation was observed against Q-PVP and Q-PVP-Au at 29 μg.mL-1 and 27 μg.mL-1, respectively. The antibacterial studies show significant efficacy against Escherichia coli (E. coli) in the presence of C-PVP and C-PVP-Au. The substantial antibacterial potential of C-PVP@PVA and C-PVP-Au@PVA membranes shows promising wound healing applications. The PVA membranes with nanoparticles promote the antibacterial activity and wound healing activity in the Drosophila model. C-PVP-Au@PVA membrane healed the wound faster than the C-PVP@PVA, and it can be used for better results in wound healing. Thus, C-PVP-Au and C-PVP have higher bioavailability and stability and can act as multifunctional therapeutic agents for amyloid-related diseases and as wound healing agents. Graphical abstract C-PVP, and C-PVP-Au conjugates for inhibition of HEWL aggregation, antibacterial and wound healing activity.
Collapse
Affiliation(s)
- Pranita Rananaware
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Samir Bauri
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Odisha, Rourkela, 769008, India
| | - Rangappa Keri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Odisha, Rourkela, 769008, India
| | - Varsha Brahmkhatri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
4
|
Singh S, Chib S, Akhtar MJ, Kumar B, Chawla PA, Bhatia R. Paradigms and Success Stories of Natural Products in Drug Discovery Against Neurodegenerative Disorders (NDDs). Curr Neuropharmacol 2024; 22:992-1015. [PMID: 36606589 PMCID: PMC10964107 DOI: 10.2174/1570159x21666230105110834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are multifaceted complex disorders that have put a great health and economic burden around the globe nowadays. The multi-factorial nature of NDDs has presented a great challenge in drug discovery and continuous efforts are in progress in search of suitable therapeutic candidates. Nature has a great wealth of active principles in its lap that has cured the human population since ancient times. Natural products have revealed several benefits over conventional synthetic medications and scientists have shifted their vision towards exploring the therapeutic potentials of natural products in the past few years. The structural mimicking of natural compounds to endogenous ligands has presented them as a potential therapeutic candidate to prevent the development of NDDs. In the presented review, authors have summarized demographical facts about various NDDs including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and various types of sclerosis in the brain. The significant findings of new active principles of natural origin along with their therapeutic potentials on NDDs have been included. Also, a description of clinical trials and patents on natural products has been enlisted in this compilation. Although natural products have shown promising success in drug discovery against NDDs, still their use is associated with several ethical issues which need to be solved in the upcoming time.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Md. Jawaid Akhtar
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO620, PC 130 Azaiba, Bousher, Muscat, Oman
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| |
Collapse
|
5
|
Maruf A, Milewska M, Varga M, Wandzik I. Trehalose-Bearing Carriers to Target Impaired Autophagy and Protein Aggregation Diseases. J Med Chem 2023; 66:15613-15628. [PMID: 38031413 PMCID: PMC10726369 DOI: 10.1021/acs.jmedchem.3c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
In recent years, trehalose, a natural disaccharide, has attracted growing attention because of the discovery of its potential to induce autophagy. Trehalose has also been demonstrated to preserve the protein's structural integrity and to limit the aggregation of pathologically misfolded proteins. Both of these properties have made trehalose a promising therapeutic candidate to target autophagy-related disorders and protein aggregation diseases. Unfortunately, trehalose has poor bioavailability due to its hydrophilic nature and susceptibility to enzymatic degradation. Recently, trehalose-bearing carriers, in which trehalose is incorporated either by chemical conjugation or physical entrapment, have emerged as an alternative option to free trehalose to improve its efficacy, particularly for the treatment of neurodegenerative diseases, atherosclerosis, nonalcoholic fatty liver disease (NAFLD), and cancers. In the current Perspective, we discuss all existing literature in this emerging field and try to identify key challenges for researchers intending to develop trehalose-bearing carriers to stimulate autophagy or inhibit protein aggregation.
Collapse
Affiliation(s)
- Ali Maruf
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
- Drug
Research Progam, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5E, 00014 Helsinki, Finland
| | - Małgorzata Milewska
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Máté Varga
- Department
of Genetics, ELTE Eötvös Loránd
University, Pázmány
P. stny. 1/C, Budapest H-1117, Hungary
| | - Ilona Wandzik
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
6
|
Zhou F, Peterson T, Fan Z, Wang S. The Commonly Used Stabilizers for Phytochemical-Based Nanoparticles: Stabilization Effects, Mechanisms, and Applications. Nutrients 2023; 15:3881. [PMID: 37764665 PMCID: PMC10534333 DOI: 10.3390/nu15183881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Phytochemicals, such as resveratrol, curcumin, and quercetin, have many benefits for health, but most of them have a low bioavailability due to their poor water solubility and stability, quick metabolism, and clearance, which restricts the scope of their potential applications. To overcome these issues, different types of nanoparticles (NPs), especially biocompatible and biodegradable NPs, have been developed. NPs can carry phytochemicals and increase their solubility, stability, target specificity, and oral bioavailability. However, NPs are prone to irreversible aggregation, which leads to NP instability and loss of functions. To remedy this shortcoming, stabilizers like polymers and surfactants are incorporated on NPs. Stabilizers not only increase the stability of NPs, but also improve their characteristics. The current review focused on discussing the state of the art in research on synthesizing phytochemical-based NPs and their commonly employed stabilizers. Furthermore, stabilizers in these NPs were also discussed in terms of their applications, effects, and underlying mechanisms. This review aimed to provide more references for developing stabilizers and NPs for future research.
Collapse
Affiliation(s)
- Fang Zhou
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA;
| | - Tiffany Peterson
- College of Integrative Sciences and Arts, Arizona State University, Phoenix, AZ 85004, USA;
| | - Zhaoyang Fan
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA;
| |
Collapse
|
7
|
Mandal S, Jana D, Dolai J, Sarkar AK, Ghorai BK, Jana NR. Biodegradable Poly(trehalose) Nanoparticle for Preventing Amyloid Beta Aggregation and Related Neurotoxicity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37167565 DOI: 10.1021/acsabm.2c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Trehalose is a disaccharide that is capable of inhibiting protein aggregation and activating cellular autophagy. It has been shown that a polymer or nanoparticle form, terminated with multiple trehalose units, can significantly enhance the anti-amyloidogenic performance and is suitable for the treatment of neurodegenerative diseases. Here, we report a trehalose-conjugated polycarbonate-co-lactide polymer and formulation of its nanoparticles having multiple numbers of trehalose exposed on the surface. The resultant poly(trehalose) nanoparticle inhibits the aggregation of amyloid beta peptides and disintegrates matured amyloid fibrils into smaller fragments. Moreover, the poly(trehalose) nanoparticle lowers extracellular amyloid β oligomer-driven cellular stress and enhances cell viability. The presence of biodegradable polycarbonate components in the poly(trehalose) nanoparticle would enhance their application potential as an anti-amyloidogenic material.
Collapse
Affiliation(s)
- Suman Mandal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Debabrata Jana
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700118, India
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Binay K Ghorai
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
8
|
Zheng R, Yin T, Chen Z, Lin X, Li B, Zhang Y. Degradation of imidacloprid and acetamiprid in tea ( Camellia sinensis) infusion by ultraviolet light irradiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:316-326. [PMID: 36942478 DOI: 10.1080/03601234.2023.2188850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The degradation of imidacloprid and acetamiprid in tea infusion by ultraviolet (UV) light irradiation was investigated in this study. Results showed that the influence of UV light irradiation on the quality of tea infusion was controllable and UV light irradiation was effective on the degradation of both pesticides. The maximum removal rates were 75.2% for imidacloprid and 17.6% for acetamiprid after irradiation (650 µW/cm,2 120 min). The degradation of both pesticides followed the first-order kinetics model. Three degradation products were identified for imidacloprid and one for acetamiprid based on liquid chromatography-tandem mass spectrometry analysis. The degradation pathway of imidacloprid involved in the cleavage of C-C bond with the loss of nitro group followed by the hydrogenation, oxidation and hydrolysis, while the degradation of acetamiprid involved in the oxidation at the chlorine atom with the bonding of C atoms at positions 1 and 4 on the pyridine ring. Simultaneously, the toxicity of both pesticides was mitigated by UV light irradiation according to LO2 cell toxicity evaluation. The study provided a low-cost and effective way to reduce imidacloprid and acetamiprid from tea infusion, and it has the potential to be applied to the ready-to drink tea beverage production in industrial scale.
Collapse
Affiliation(s)
- Ruiting Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tao Yin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhongzheng Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Brzeziński M, Gonciarz W, Kost B, Mikołajczyk-Chmiela M. Can histamine cause an enhancement of the cellular uptake and cytotoxicity of doxorubicin-loaded polylactide nanoparticles? Eur J Pharm Sci 2023; 185:106438. [PMID: 37001569 DOI: 10.1016/j.ejps.2023.106438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Histamine (His) in humans is physiologically involved in neurotransmission and increases vascular permeability during the development of inflammatory response and immunity. It could be used to enhance drug-loaded nanoparticles (NPs) distribution. However, it cannot be freely delivered due to the risk of His-dose-dependent deleterious effects. His can be attached to the polymeric backbone during polymerization to overcome this limitation. In this study, His was used as an initiator of lactide polymerization, and the obtained macromolecules were subsequently used to prepare doxorubicin (DOX)-loaded NPs by nanoprecipitation and microfluidics for examination of anti-cancer properties. Notably, the in vitro activity towards gastric cancer cells (AGS) of the NPs composed of histamine-functionalized polylactides (PLAs) was greatly enhanced compared to control NPs built from hydroxy‑functionalized PLAs. Furthermore, Zonula occludens-1 (ZO-1) tight junction protein production was significantly diminished after treating cells with DOX-loaded NPs assembled with PLAs with histamine residues. These results demonstrate the synergistic effect in cytotoxicity towards gastric cancer cells of DOX and the histamine that are carried by NPs. It is believed that His-DOX NPs strategy may lead to effective, targeted, and low-toxic delivery of drugs into cancer cells.
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
11
|
Zothantluanga JH, Zonunmawii, Das P, Sarma H, Umar AK. Nanotherapeutics of Phytoantioxidants for Parasitic Diseases and Neglected Tropical Diseases. PHYTOANTIOXIDANTS AND NANOTHERAPEUTICS 2022:351-376. [DOI: 10.1002/9781119811794.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Vinciguerra D, Gelb MB, Maynard HD. Synthesis and Application of Trehalose Materials. JACS AU 2022; 2:1561-1587. [PMID: 35911465 PMCID: PMC9327084 DOI: 10.1021/jacsau.2c00309] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Trehalose is a naturally occurring, nonreducing disaccharide that is widely used in the biopharmaceutical, food, and cosmetic industries due to its stabilizing and cryoprotective properties. Over the years, scientists have developed methodologies to synthesize linear polymers with trehalose units either in the polymer backbone or as pendant groups. These macromolecules provide unique properties and characteristics, which often outperform trehalose itself. Additionally, numerous reports have focused on the synthesis and formulation of materials based on trehalose, such as nanoparticles, hydrogels, and thermoset networks. Among many applications, these polymers and materials have been used as protein stabilizers, as gene delivery systems, and to prevent amyloid aggregate formation. In this Perspective, recent developments in the synthesis and application of trehalose-based linear polymers, hydrogels, and nanomaterials are discussed, with a focus on utilization in the biomedical field.
Collapse
Affiliation(s)
- Daniele Vinciguerra
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood
Plaza, Los Angeles, California 90095-1569, United States
| | - Madeline B. Gelb
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood
Plaza, Los Angeles, California 90095-1569, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California
NanoSystems Institute, University of California,
Los Angeles, 570 Westwood
Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
13
|
Kost B, Basko M, Bednarek M, Socka M, Kopka B, Łapienis G, Biela T, Kubisa P, Brzeziński M. The influence of the functional end groups on the properties of polylactide-based materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Sorokina SA, Shifrina ZB. Dendrimers as Antiamyloid Agents. Pharmaceutics 2022; 14:760. [PMID: 35456594 PMCID: PMC9031116 DOI: 10.3390/pharmaceutics14040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Dendrimer-protein conjugates have significant prospects for biological applications. The complexation changes the biophysical behavior of both proteins and dendrimers. The dendrimers could influence the secondary structure of proteins, zeta-potential, distribution of charged regions on the surface, the protein-protein interactions, etc. These changes offer significant possibilities for the application of these features in nanotheranostics and biomedicine. Based on the dendrimer-protein interactions, several therapeutic applications of dendrimers have emerged. Thus, the formation of stable complexes retains the disordered proteins on the aggregation, which is especially important in neurodegenerative diseases. To clarify the origin of these properties and assess the efficiency of action, the mechanism of protein-dendrimer interaction and the nature and driving force of binding are considered in this review. The review outlines the antiamyloid activity of dendrimers and discusses the effect of dendrimer structures and external factors on their antiamyloid properties.
Collapse
Affiliation(s)
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia;
| |
Collapse
|
15
|
Milewska M, Milewski A, Wandzik I, Stenzel MH. Structurally analogous trehalose and sucrose glycopolymers – comparative characterization and evaluation of their effects on insulin fibrillation. Polym Chem 2022. [DOI: 10.1039/d1py01517f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Comprehensive comparative characterization of highly structurally similar, RAFT-prepared trehalose and sucrose glycopolymers.
Collapse
Affiliation(s)
- Małgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Andrzej Milewski
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
17
|
Debnath K, Pal S, Jana NR. Chemically Designed Nanoscale Materials for Controlling Cellular Processes. Acc Chem Res 2021; 54:2916-2927. [PMID: 34232016 DOI: 10.1021/acs.accounts.1c00215] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles are widely used in various biomedical applications as drug delivery carriers, imaging probes, single-molecule tracking/detection probes, artificial chaperones for inhibiting protein aggregation, and photodynamic therapy materials. One key parameter of these applications is the ability of the nanoparticles to enter into the cell cytoplasm, target different subcellular compartments, and control intracellular processes. This is particularly the case because nanoparticles are designed to interact with subcellular components for the required biomedical performance. However, cells are protected from their surroundings by the cell membrane, which exerts strict control over entry of foreign materials. Thus, nanoparticles need to be designed appropriately so that they can readily cross the cell membrane, target subcellular compartments, and control intracellular processes.In the past few decades there have been great advancements in understanding the principles of cellular uptake of foreign materials. In particular, it has been shown that internalization of foreign materials (small molecules, macromolecules, nanoparticles) is size-dependent: endocytotic uptake of materials requires sizes greater than 10 nm, and materials with sizes of 10-100 nm usually enter into cells by energy-dependent endocytosis via biomembrane-coated vesicles. Direct access to the cytosol is limited to very specific conditions, and endosomal escape of material appears to be the most practical approach for intracellular processing.In this Account, we describe how cellular uptake and intracellular processing of nanoscale materials can be controlled by appropriate design of size and surface chemistry. We first describe the cell membrane structure and principles of cellular uptake of foreign materials followed by their subcellular trafficking. Next, we discuss the designed surface chemistry of a 5-50 nm particle that offers preferential lipid-raft/caveolae-mediated endocytosis over clathrin-mediated endocytosis with minimum endosomal/lysosomal trafficking or energy-independent direct cell membrane translocation (without endocytosis) followed by cytosolic delivery without endosomal/lysosomal trafficking. In particular, we emphasize that the zwitterionic-lipophilic surface property of a nanoparticle offers preferential interaction with the lipid raft region of the cell membrane followed by lipid raft uptake, whereas a lower number of affinity biomolecules (<25) on the nanoparticle surface offers caveolae/lipid-raft uptake, while an arginine/guanidinium-terminated surface along with a size of <10 nm offers direct cell membrane translocation. Finally, we discuss how nanoprobes can be designed by adapting these surface chemistry and size preference principles so that they can readily enter into the cell, label different subcellular compartments, and control intracellular processes such as trafficking kinetics, exocytosis, autophagy, amyloid aggregation, and clearance of toxic amyloid aggregates. The Account ends with a Conclusions and Outlook where we discuss a vision for the development of subcellular targeting nanodrugs and imaging nanoprobes by adapting to these surface chemistry principles.
Collapse
Affiliation(s)
- Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Suman Pal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nikhil R. Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
18
|
Borbolla-Jiménez FV, Del Prado-Audelo ML, Cisneros B, Caballero-Florán IH, Leyva-Gómez G, Magaña JJ. New Perspectives of Gene Therapy on Polyglutamine Spinocerebellar Ataxias: From Molecular Targets to Novel Nanovectors. Pharmaceutics 2021; 13:1018. [PMID: 34371710 PMCID: PMC8309146 DOI: 10.3390/pharmaceutics13071018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular pathways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis, ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic intervention, and there is no therapeutic approach to prevent or reverse disease progression. This review provides a compilation of the experimental advances obtained in cell-based and animal models toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of their potential application in clinical trials. In the second part, we describe the promising potential of nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of nanoparticle (NP) systems with different physicochemical and functionalization characteristics has been approached, in order to determine their ability to evade the immune system response and to enhance brain delivery of molecular tools. In the final part of this review, the imminent application of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Farmacia, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| |
Collapse
|
19
|
Ghosh P, Bera A, Bhadury P, De P. From Small Molecules to Synthesized Polymers: Potential Role in Combating Amyloidogenic Disorders. ACS Chem Neurosci 2021; 12:1737-1748. [PMID: 33929827 DOI: 10.1021/acschemneuro.1c00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The concept of developing novel anti-amyloid inhibitors in the scientific community has engrossed remarkable research interests and embraced significant potential to resolve numerous pathological conditions including neurological as well as non-neuropathic disorders associated with amyloid protein aggregation. These pathological conditions have harmful effects on cellular activities which include malfunctioning of organs and tissue, cellular impairment, etc. To date, different types of small molecular probes like polyphenolic compounds, nanomaterials, surfactants, etc. have been developed to address these issues. Recently synthetic polymeric materials are extensively investigated to explore their role in the protein aggregation pathway. On the basis of these perspectives, in this review article, we have comprehensively summarized the current perspectives on protein misfolding and aggregation and importance of therapeutic approaches in designing novel effective inhibitors. The main purpose of this review article is to provide a detailed perspective of the current landscape as well as trailblazing voyage of various inhibitors ranging from small molecular probes to polymeric scaffolds in the field of protein misfolding and aggregation. A particular emphasis is given on the structural role and molecular mechanistic pathway involved in modulating the aggregation pathway to further inspire the researchers and shed light in this bright research field.
Collapse
|
20
|
Revi N, Rengan AK. Impact of dietary polyphenols on neuroinflammation-associated disorders. Neurol Sci 2021; 42:3101-3119. [PMID: 33988799 DOI: 10.1007/s10072-021-05303-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders like Alzheimer's, Parkinson's, and associated dementia typically originate with altered protein folding and aggregation of their β structures in the neurons. This self-aggregation leads to glial activation in the brain, causing neuroinflammation and leads to neuronal death. According to statistics provided by WHO, there are around 50 million people with dementia worldwide and every year, 10 million more cases are projected to increase. Also, around 5-8 percentage of people who are aged above 60 globally has dementia or associated disorders. Over 82 million in 2030 and 152 in 2050 are expected to have dementia. Most of these patients fall into low-middle-income countries which makes it even more essential to find an affordable and effective treatment method. Polyphenols of different origin are studied for their potential role as anti-neuro-inflammatory molecules. This review would summarize recent advances in three widely researched dietary polyphenols projected as potential therapeutic agents for disorders like Alzheimer's, Parkinson's, etc. They are Resveratrol, Catechins, and Tannins. The review would discuss the recent advances and challenges in using these polyphenols using specific examples as potential therapeutic agents against neuroinflammation associated disorders. An abstract of neuroinflammation-associated events and the effects by selected polyphenols.
Collapse
Affiliation(s)
- Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India.
| |
Collapse
|
21
|
Yaneva Z, Ivanova D. Catechins within the Biopolymer Matrix-Design Concepts and Bioactivity Prospects. Antioxidants (Basel) 2020; 9:E1180. [PMID: 33256098 PMCID: PMC7761086 DOI: 10.3390/antiox9121180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies and clinical investigations proposed that catechins extracts alone may not provide a sufficient level of bioactivities and promising therapeutic effects to achieve health benefits due to a number of constraints related to poor oral absorption, limited bioavailability, sensitivity to oxidation, etc. Modern scientific studies have reported numerous techniques for the design of micro- and nano-bio-delivery systems as novel and promising strategies to overcome these obstacles and to enhance catechins' therapeutic activity. The objective assessment of their benefits, however, requires a critical comparative estimation of the advantages and disadvantages of the designed catechins-biocarrier systems, their biological activities and safety administration aspects. In this respect, the present review objectively outlines, compares and assesses the recent advances related to newly developed design concepts of catechins' encapsulation into various biopolymer carriers and their release behaviour, with a special emphasis on the specific physiological biofunctionalities of the innovative bioflavonoid/biopolymer delivery systems.
Collapse
Affiliation(s)
- Zvezdelina Yaneva
- Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria;
| | | |
Collapse
|
22
|
Mandal S, Panja P, Debnath K, Jana NR, Jana NR. Small-Molecule-Functionalized Hyperbranched Polyglycerol Dendrimers for Inhibiting Protein Aggregation. Biomacromolecules 2020; 21:3270-3278. [DOI: 10.1021/acs.biomac.0c00713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Suman Mandal
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prasanta Panja
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Koushik Debnath
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nihar R. Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Nikhil R. Jana
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
23
|
Comparison of L-lactide polymerization by using magnesium complexes bearing 2-(arylideneamino)phenolate and 2-((arylimino)methyl)phenolate ligands. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|