1
|
Pathak S, Le NBT, Oyama T, Odahara Y, Momotake A, Ikebukuro K, Kataoka-Hamai C, Yoshikawa C, Kawakami K, Kaizuka Y, Yamazaki T. Immunostimulatory Effects of Guanine-Quadruplex Topologies as Scaffolds for CpG Oligodeoxynucleotides. Biomolecules 2025; 15:95. [PMID: 39858489 PMCID: PMC11763011 DOI: 10.3390/biom15010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake. G4 structures can form in parallel, anti-parallel, or hybrid topologies, depending on strand orientation, but the effects of these topologies on CpG ODNs have not yet been explored. In this study, we designed three distinct G4 topologies as scaffolds for CpG ODNs. Among the three topology, the parallel G4 CpG ODN demonstrated the highest serum stability and cellular uptake, resulting in the strongest immune response from macrophage cells. Additionally, we investigated the binding affinities of the different G4 topologies to macrophage scavenger receptor-1 and TLR9, both of which are key to immune activation. These findings provide valuable insights into the development of CpG ODN-based vaccine adjuvants.
Collapse
Affiliation(s)
- Soumitra Pathak
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (S.P.); (N.B.T.L.); (C.K.-H.); (C.Y.); (K.K.); (Y.K.)
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Sapporo 060-0808, Japan
| | - Nguyen Bui Thao Le
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (S.P.); (N.B.T.L.); (C.K.-H.); (C.Y.); (K.K.); (Y.K.)
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Sapporo 060-0808, Japan
| | - Taiji Oyama
- JASCO Corporation, Hachioji 192-8537, Japan;
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan;
| | - Yusuke Odahara
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan; (Y.O.); (A.M.)
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan; (Y.O.); (A.M.)
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan;
| | - Chiho Kataoka-Hamai
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (S.P.); (N.B.T.L.); (C.K.-H.); (C.Y.); (K.K.); (Y.K.)
| | - Chiaki Yoshikawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (S.P.); (N.B.T.L.); (C.K.-H.); (C.Y.); (K.K.); (Y.K.)
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Sapporo 060-0808, Japan
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (S.P.); (N.B.T.L.); (C.K.-H.); (C.Y.); (K.K.); (Y.K.)
| | - Yoshihisa Kaizuka
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (S.P.); (N.B.T.L.); (C.K.-H.); (C.Y.); (K.K.); (Y.K.)
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (S.P.); (N.B.T.L.); (C.K.-H.); (C.Y.); (K.K.); (Y.K.)
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Sapporo 060-0808, Japan
| |
Collapse
|
2
|
Li X, Ebara M, Shirahata N, Yamazaki T, Hanagata N. Synergistic Effects of Metal-Organic Nanoplatform and Guanine Quadruplex-Based CpG Oligodeoxynucleotides in Therapeutic Cancer Vaccines with Different Tumor Antigens. Vaccines (Basel) 2024; 12:649. [PMID: 38932378 PMCID: PMC11209203 DOI: 10.3390/vaccines12060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanosine (CpG) motifs are readily recognized by Toll-like receptor 9 on immune cells, trigger an immunomodulatory cascade, induce a Th1 -biased immune milieu, and have great potential as an adjuvant in cancer vaccines. In this study, a green one-step synthesis process was adopted to prepare an amino-rich metal-organic nanoplatform (FN). The synthesized FN nanoplatform can simultaneously and effectively load model tumor antigens (OVA)/autologous tumor antigens (dLLC) and immunostimulatory CpG ODNs with an unmodified PD backbone and a guanine quadruplex structure to obtain various cancer vaccines. The FN nanoplatform and immunostimulatory CpG ODNs generate synergistic effects to enhance the immunogenicity of different antigens and inhibit the growth of established and distant tumors in both the murine E.G7-OVA lymphoma model and the murine Lewis lung carcinoma model. In the E.G7-OVA lymphoma model, vaccination efficiently increases the CD4+, CD8+, and tetramer+CD8+ T cell populations in the spleens. In the Lewis lung carcinoma model, vaccination efficiently increases the CD3+CD4+ and CD3+CD8+ T cell populations in the spleens and CD3+CD8+, CD3-CD8+, and CD11b+CD80+ cell populations in the tumors, suggesting the alteration of tumor microenvironments from cold to hot tumors.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Nobutaka Hanagata
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
3
|
Lachance-Brais C, Yao C, Reyes-Valenzuela A, Asohan J, Guettler E, Sleiman HF. Exceptional Nuclease Resistance of DNA and RNA with the Addition of Small-Molecule Nucleobase Mimics. J Am Chem Soc 2024; 146:5811-5822. [PMID: 38387071 DOI: 10.1021/jacs.3c07023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nucleases present a formidable barrier to the application of nucleic acids in biology, significantly reducing the lifetime of nucleic acid-based drugs. Here, we develop a novel methodology to protect DNA and RNA from nucleases by reconfiguring their supramolecular structure through the addition of a nucleobase mimic, cyanuric acid. In the presence of cyanuric acid, polyadenine strands assemble into triple helical fibers known as the polyA/CA motif. We report that this motif is exceptionally resistant to nucleases, with the constituent strands surviving for up to 1 month in the presence of serum. The conferred stability extends to adjacent non-polyA sequences, albeit with diminishing returns relative to their polyA sections due to hypothesized steric clashes. We introduce a strategy to regenerate stability through the introduction of free polyA strands or positively charged amino side chains, enhancing the stability of sequences of varied lengths. The proposed protection mechanism involves enzyme failure to recognize the unnatural polyA/CA motif, coupled with the motif's propensity to form long, bundling supramolecular fibers. The methodology provides a fundamentally new mechanism to protect nucleic acids from degradation using a supramolecular approach and increases lifetime in serum to days, weeks, or months.
Collapse
Affiliation(s)
| | - Chihyu Yao
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | | | - Jathavan Asohan
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | - Elizabeth Guettler
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| | - Hanadi F Sleiman
- McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A0B8, Canada
| |
Collapse
|
4
|
Matsuda M, Mochizuki S. Control of A/D type CpG-ODN aggregates to a suitable size for induction of strong immunostimulant activity. Biochem Biophys Rep 2023; 36:101573. [PMID: 37954170 PMCID: PMC10633530 DOI: 10.1016/j.bbrep.2023.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Among several types of CpG-ODNs, A/D-type CpG-ODNs have potent adjuvant activity to induce Th-1 immune responses, but exhibit a propensity to aggregate. For the clinical application of A/D-type CpG-ODNs, it is necessary to control such aggregation and obtain a comprehensive understanding of the relationship between their structure and the immune responses. This study revealed that a representative A/D-type CpG ODN, D35, adopted a single-stranded structure in water, while it assembled into aggregates in response to Na+ ions. From polyacrylamide gel electrophoresis and circular dichroism analyses, D35 adopted a homodimeric form (duplex) via palindromic sequences in low-Na+-concentration conditions (10-50 mM NaCl). After replacement of the solution with PBS, quadruplexes began to form in a manner coordinated by Na+, resulting in large aggregates. The duplexes and small aggregates prepared in 50 mM NaCl showed not only high cellular uptake but also high affinity to Toll-like receptor 9 (TLR9) proteins, leading to the production of a large amount of interferon-α for peripheral blood mononuclear cells. The much larger aggregates prepared in 100 mM NaCl were incorporated into cells at a high level, but showed a low ability to induce cytokine production. This suggests that the large aggregates have difficulty inducing TLR9 dimerization, resulting in loss of the stimulation of the cells. We thus succeeded in inducing adequate innate immunity in vitro by controlling and adjusting the formation of D35 aggregates. Therefore, the findings in this study for D35 ODNs could be a vital research foundation for in vivo applications.
Collapse
Affiliation(s)
- Miyu Matsuda
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
5
|
Le NBT, Tu ATT, Zhao D, Yoshikawa C, Kawakami K, Kaizuka Y, Yamazaki T. Influence of the Charge Ratio of Guanine-Quadruplex Structure-Based CpG Oligodeoxynucleotides and Cationic DOTAP Liposomes on Cytokine Induction Profiles. Biomolecules 2023; 13:1639. [PMID: 38002321 PMCID: PMC10669863 DOI: 10.3390/biom13111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Cationic liposomes, specifically 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) liposomes, serve as successful carriers for guanine-quadruplex (G4) structure-based cytosine-guanine oligodeoxynucleotides (CpG ODNs). The combined benefits of CpG ODNs forming a G4 structure and a non-viral vector carrier endow the ensuing complex with promising adjuvant properties. Although G4-CpG ODN-DOTAP complexes show a higher immunostimulatory effect than naked G4-CpG ODNs, the effects of the complex composition, especially charge ratios, on the production of the pro-inflammatory cytokines interleukin (IL)-6 and interferon (IFN)-α remain unclear. Here, we examined whether charge ratios drive the bifurcation of cytokine inductions in human peripheral blood mononuclear cells. Linear CpG ODN-DOTAP liposome complexes formed micrometer-sized positively charged agglomerates; G4-CpG ODN-DOTAP liposome complexes with low charge ratios (0.5 and 1.5) formed ~250 nm-sized negatively charged complexes. Notably, low-charge-ratio (0.5 and 1.5) complexes induced significantly higher IL-6 and IFN-α levels simultaneously than high-charge-ratio (2 and 2.5) complexes. Moreover, confocal microscopy indicated a positive correlation between the cellular uptake of the complex and amount of cytokine induced. The observed effects of charge ratios on complex size, surface charge, and affinity for factors that modify cellular-uptake, intracellular-activity, and cytokine-production efficiency highlight the importance of a rational complex design for delivering and controlling G4-CpG ODN activity.
Collapse
Affiliation(s)
- Nguyen Bui Thao Le
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Anh Thi Tram Tu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, VNUHCM-University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Linh Trung, Thu Duc, Ho Chi Minh City 70000, Vietnam
| | - Dandan Zhao
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Chiaki Yoshikawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Yoshihisa Kaizuka
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| |
Collapse
|
6
|
Hu Y, Luo Z, Ge Z, Li Q, Yang P, Zhang H, Zhang H. Morphology Dictated Immune Activation with Framework Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303454. [PMID: 37559164 DOI: 10.1002/smll.202303454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/19/2023] [Indexed: 08/11/2023]
Abstract
Framework nucleic acids (FNAs) of various morphologies, designed using the precise and programmable Watson-Crick base pairing, serve as carriers for biomolecule delivery in biology and biomedicine. However, the impact of their shape, size, concentration, and the spatial presentation of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) on immune activation remains incompletely understood. In this study, representative FNAs with varying morphologies are synthesized to explore their immunological responses. Low concentrations (50 nM) of all FNAs elicited no immunostimulation, while high concentrations of elongated DNA nanostrings and tetrahedrons triggered strong activation due to their larger size and increased cellular uptake, indicating that the innate immune responses of FNAs depend on both dose and morphology. Notably, CpG ODNs' immune response can be programmed by FNAs through regulating the spatial distance, with optimal spacing of 7-8 nm eliciting the highest immunostimulation. These findings demonstrate FNAs' potential as a designable tool to study nucleic acid morphology's impact on biological responses and provide a strategy for future CpG-mediated immune activation carrier design.
Collapse
Affiliation(s)
- Yao Hu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Zhongxu Luo
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peihui Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Honglu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Zhao D, Tu ATT, Shobo M, Le NBT, Yoshikawa C, Sugai K, Hakamata Y, Yamazaki T. Non-Modified CpG Oligodeoxynucleotide Forming Guanine-Quadruplex Structure Complexes with ε-Poly- L-Lysine Induce Antibody Production as Vaccine Adjuvants. Biomolecules 2022; 12:biom12121868. [PMID: 36551297 PMCID: PMC9775190 DOI: 10.3390/biom12121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) induce inflammatory cytokines and type I interferons (IFNs) to activate the immune system. To apply CpG ODNs as vaccine adjuvants, the cellular uptake and stability of phosphodiester-based, non-modified ODNs require further improvement. Previously developed new CpG ODNs forming guanine-quadruplex (G4) structures showed higher nuclease resistance and cellular uptake than linear CpG ODNs; however, the complex formation of G4-CpG ODNs with antigen proteins is necessary for their application as vaccine adjuvants. In this study, we utilized a cationic polymer, ε-poly-L-lysine (ε-PLL), as a carrier for G4-CpG ODNs and antigen. The ε-PLL/G4-CpG ODN complex exhibited enhanced stability against nucleases. Cellular uptake of the ε-PLL/G4-CpG ODN complex positively correlated with the N/P ratio. In comparison to naked G4-CpG ODNs, the ε-PLL/G4-CpG ODN complex induced extremely high levels of interleukin (IL)-6, IL-12, and IFN-β. Relative immune cytokine production was successfully tuned by N/P ratio modification. Mice with the ε-PLL/G4-CpG ODN/ovalbumin (OVA) complex showed increased OVA-specific immunoglobulin (Ig)G, IgG1, and IgG2c levels, whereas total IgE levels did not increase and weight gain rates were not affected. Therefore, ε-PLL can serve as a safe and effective phosphodiester-based, non-modified CpG ODN delivery system, and the ε-PLL/G4-CpG ODN/antigen complex is a highly promising candidate for vaccine adjuvants and can be further used in clinical research.
Collapse
Affiliation(s)
- Dandan Zhao
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Anh Thi Tram Tu
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
| | - Miwako Shobo
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Nguyen Bui Thao Le
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Chiaki Yoshikawa
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Kazuhisa Sugai
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yoji Hakamata
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
- Correspondence: ; Tel.: +81-29-859-2345; Fax: +81-29-859-2449
| |
Collapse
|
8
|
Miglietta G, Marinello J, Russo M, Capranico G. Ligands stimulating antitumour immunity as the next G-quadruplex challenge. Mol Cancer 2022; 21:180. [PMID: 36114513 PMCID: PMC9482198 DOI: 10.1186/s12943-022-01649-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractG-quadruplex (G4) binders have been investigated to discover new anticancer drugs worldwide in past decades. As these ligands are generally not highly cytotoxic, the discovery rational was mainly based on increasing the cell-killing potency. Nevertheless, no G4 binder has been shown yet to be effective in cancer patients. Here, G4 binder activity at low dosages will be discussed as a critical feature to discover ligands with therapeutic effects in cancer patients. Specific effects of G4 binders al low doses have been reported to occur in cancer and normal cells. Among them, genome instability and the stimulation of cytoplasmic processes related to autophagy and innate immune response open to the use of G4 binders as immune-stimulating agents. Thus, we propose a new rational of drug discovery, which is not based on cytotoxic potency but rather on immune gene activation at non-cytotoxic dosage.
Collapse
|
9
|
Tu ATT, Hoshi K, Ma Y, Oyama T, Suzuki S, Tsukakoshi K, Nagasawa K, Ikebukuro K, Yamazaki T. Effects of G-Quadruplex Ligands on the Topology, Stability, and Immunostimulatory Properties of G-Quadruplex-Based CpG Oligodeoxynucleotides. ACS Chem Biol 2022; 17:1703-1713. [PMID: 35765965 DOI: 10.1021/acschembio.1c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported that the formation of guanine-quadruplex (G4) structures provides phosphodiester oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine (CpG ODNs) with higher nuclease resistance and cellular uptake, thereby increasing their immunostimulation efficiency through TLR9 activation. CpG ODNs forming G4 structures (G4 CpG ODNs) are thus potential vaccine adjuvants against infectious diseases. However, the G4 structure changes topology depending on the surrounding environment. Recently, G4 ligands, which are small molecules that bind to G4 ODNs with high affinity, were reported to improve the stability of G4. In this study, we propose to increase the stability and function of G4 CpG ODNs using G4 ligands. We show the effects of two G4 ligands, named L2H2-6OTD (L2H2) and L2G2-2M2EG-6OTD (L2G2), on the topology, stability, and immunostimulatory properties of a monomeric hybrid-type G4 CpG ODN containing CpG motifs in the central loop, named GD3. We found that L2H2 helps maintain the hybrid G4 topology of GD3, whereas L2G2 induces parallel G4 formation. Both G4 ligands increase the thermodynamic and nuclease stability of GD3. However, only GD3 associated with L2H2 binds efficiently to TLR9 and evokes a higher immune response from mouse macrophage-like RAW264 cells. GD3 associated with L2G2 does not bind efficiently to TLR9 and elicits lower cytokine production. Our results demonstrate that the potential to enhance immunostimulatory properties depends on the ability of G4 ligands to maintain and stabilize the hybrid G4 of GD3. We anticipate that our findings will facilitate the development of more effective G4 CpG ODN-based vaccine adjuvants against infectious diseases.
Collapse
Affiliation(s)
- Anh Thi Tram Tu
- Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan.,Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan.,Department of Magnetic and Biomedical Materials, Faculty of Materials Science, University of Science, Vietnam National University, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh 70000, Viet Nam.,Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh 70000, Viet Nam
| | - Kazuaki Hoshi
- Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Yue Ma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Taiji Oyama
- JASCO Corporation, 2967-5, Ishikawamachi, Hachioji, Tokyo 192-8537, Japan
| | - Satoko Suzuki
- JASCO Corporation, 2967-5, Ishikawamachi, Hachioji, Tokyo 192-8537, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | - Tomohiko Yamazaki
- Nanomedicine Group, Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan.,Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| |
Collapse
|
10
|
Tu ATT, Hoshi K, Shobo M, Yamazaki T. G-quadruplex-based CpG oligodeoxynucleotide/DOTAP complex strongly stimulates immunity in CpG motif-specific and loop-length-dependent manners. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102508. [PMID: 34906721 DOI: 10.1016/j.nano.2021.102508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Guanine-quadruplex (G4) oligodeoxynucleotides (ODNs) that contain unmethylated cytosine-phosphate-guanine motifs (G4 CpG ODN) with phosphodiester backbones are safer than the phosphorothioate (PT)-modified CpG ODNs recently used as vaccine adjuvants. However, cellular uptake and the nuclease stability of G4 CpG ODNs are still insufficient, resulting in lower immunostimulatory activity than PT-modified CpG ODNs. We aimed to enhance the immunostimulatory properties of G4 CpG ODNs by complexing with the cationic liposome 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The complex acquired nuclease resistance and improved cellular uptake. The immunostimulatory activity of the G4 CpG ODN-DOTAP lipoplexes was enhanced to a level comparable to that of PT-modified ODNs. In addition, the lipoplexes based on unmodified G4 CpG ODNs demonstrated CpG motif-specific immunostimulant activity, although PT-modified ODNs lacking the CpG motif could activate human immune cells. Interestingly, G4 CpG ODN-DOTAP lipoplexes induced interferon-α production in a loop-length dependent manner.
Collapse
Affiliation(s)
- Anh Thi Tram Tu
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan; Division of Life Science, Hokkaido university, Sapporo, Japan
| | - Kazuaki Hoshi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Miwako Shobo
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan; Division of Life Science, Hokkaido university, Sapporo, Japan.
| |
Collapse
|
11
|
Devi G, Winnerdy FR, Ang JCY, Lim KW, Phan AT. Four-Layered Intramolecular Parallel G-Quadruplex with Non-Nucleotide Loops: An Ultra-Stable Self-Folded DNA Nano-Scaffold. ACS NANO 2022; 16:533-540. [PMID: 34927423 DOI: 10.1021/acsnano.1c07630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A four-stranded scaffold of nucleic acids termed G-quadruplex (G4) has found growing applications in nano- and biotechnology. Propeller loops are a hallmark of the most stable intramolecular parallel-stranded G4s. To date, propeller loops have been observed to span only a maximum of three G-tetrad layers. Going beyond that would allow creation of more stable scaffolds useful for building robust nanodevices. Here we investigate the formation of propeller loops spanning more than three layers. We show that native nucleotide sequences are incompatible toward this goal, and we report on synthetic non-nucleotide linkers that form a propeller loop across four layers. With the established linkers, we constructed a four-layered intramolecular parallel-stranded G4, which exhibited ultrahigh thermal stability. Control on loop design would augment the toolbox toward engineering of G4-based nanoscaffolds for diverse applications.
Collapse
Affiliation(s)
- Gitali Devi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jason Cheng Yu Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
12
|
Kawamoto Y, Liu W, Yum JH, Park S, Sugiyama H, Takahashi Y, Takakura Y. Enhanced Immunostimulatory Activity of Covalent DNA Dendrons. Chembiochem 2021; 23:e202100583. [PMID: 34881505 DOI: 10.1002/cbic.202100583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Indexed: 11/10/2022]
Abstract
The present study focused on the design and synthesis of covalent DNA dendrons bearing multivalent cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) that can stimulate the immune system through the activation of TLR9. These dendrons were synthesized using branching trebler phosphoramidite containing three identical protecting groups that enabled the simultaneous synthesis of multiple strands on a single molecule. Compared with linear ODNs, covalent DNA dendrons were found to be more resistant to nuclease degradation and were more efficiently taken up by macrophage-like RAW264.7 cells. Cellular uptake was suggested to be mediated by macrophage scavenger receptors. The covalent DNA dendrons composed of multivalent immunostimulatory branches enhanced the secretion of proinflammatory cytokines TNF-α and IL-6 from RAW264.7 cells, and 9-branched DNA dendrons showed the highest enhancement. Given their enhanced efficacy, we expect covalent DNA dendrons to be useful structures of oligonucleotide medicines.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Wen Liu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
13
|
Safitri FA, Tu ATT, Hoshi K, Shobo M, Zhao D, Witarto AB, Sumarsono SH, Giri-Rachman EA, Tsukakoshi K, Ikebukuro K, Yamazaki T. Enhancement of the Immunostimulatory Effect of Phosphodiester CpG Oligodeoxynucleotides by an Antiparallel Guanine-Quadruplex Structural Scaffold. Biomolecules 2021; 11:1617. [PMID: 34827615 PMCID: PMC8615816 DOI: 10.3390/biom11111617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Guanine-quadruplex-based CpG oligodeoxynucleotides (G4 CpG ODNs) have been developed as potent immunostimulatory agents with reduced sensitivity to nucleases. We designed new monomeric G4 ODNs with an antiparallel topology using antiparallel type duplex/G4 ODNs as robust scaffolds, and we characterized their topology and effects on cytokine secretion. Based on circular dichroism analysis and quantification of mRNA levels of immunostimulatory cytokines, it was found that monomeric antiparallel G4 CpG ODNs containing two CpG motifs in the first functional loop, named G2.0.0, could maintain antiparallel topology and generate a high level of immunostimulatory cytokines in RAW264 mouse macrophage-like cell lines. We also found that the flanking sequence in the CpG motif altered the immunostimulatory effects. Gc2c.0.0 and Ga2c.0.0 are monomeric antiparallel G4 CpG ODNs with one cytosine in the 3' terminal and one cytosine/adenine in the 5' terminal of CpG motifs that maintained the same resistance to degradation in serum as G2.0.0 and improved interleukin-6 production in RAW264 and bone marrow-derived macrophages. The immunostimulatory activity of antiparallel G4 CpG ODNs is superior to that of linear natural CpG ODNs. These results provide insights for the rational design of highly potent CpG ODNs using antiparallel G4 as a robust scaffold.
Collapse
Affiliation(s)
- Fika Ayu Safitri
- Doctoral Program in Biology, School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Bandung 40132, West Java, Indonesia;
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
| | - Anh Thi Tram Tu
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Kazuaki Hoshi
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
| | - Miwako Shobo
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
| | - Dandan Zhao
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
| | - Arief Budi Witarto
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Indonesia Defense University, Bogor 16810, West Java, Indonesia;
| | - Sony Heru Sumarsono
- Physiology, Developmental Biology and Biomedical Sciences Research Group, School of Life Sciences and Technology, ITB, Bandung 40132, West Java, Indonesia; (S.H.S.); (E.A.G.-R.)
| | - Ernawati Arifin Giri-Rachman
- Physiology, Developmental Biology and Biomedical Sciences Research Group, School of Life Sciences and Technology, ITB, Bandung 40132, West Java, Indonesia; (S.H.S.); (E.A.G.-R.)
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan; (K.T.); (K.I.)
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan; (K.T.); (K.I.)
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| |
Collapse
|