1
|
Wang X, Mondal M, Jankoski PE, Kemp LK, Clemons TD, Rangachari V, Morgan SE. De Novo Amyloid Peptide-Polymer Blends with Enhanced Mechanical and Biological Properties. ACS APPLIED POLYMER MATERIALS 2025; 7:3739-3751. [PMID: 40177395 PMCID: PMC11959523 DOI: 10.1021/acsapm.4c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Amyloid peptides are structurally diverse materials that exhibit different properties depending on their self-assembly. While they are often associated with neurodegenerative diseases, functional amyloids play important roles in nature and exhibit properties with high relevance for biomedical applications, including remarkable strength, mechanical stability, antimicrobial and antioxidant properties, low cytotoxicity, and adhesion to biotic and abiotic surfaces. Challenges in developing amyloid biomaterials include the complexity of peptide chemistry and the practical techniques required for processing amyloids into bulk materials. In this work, two de novo decapeptides with fibrillar and globular morphologies were synthesized, blended with poly(ethylene oxide), and fabricated into composite mats via electrospinning. Notable enhancements in the mechanical properties of the composite mats were observed, attributed to the uniform distribution of the peptide assemblies within the PEO matrix and interactions between the materials. Morphological differences, such as the production of thinner nanofibers, are attributed to the increased conductivity from the zwitterionic nature of the decapeptides. Blend rheology and postprocessing analysis revealed how processing might affect the amyloid aggregation and secondary structure of the peptides. Both decapeptides demonstrated low cytotoxicity and strong antioxidant activity, indicating their potential for safe and effective use as biomaterials. This research lays the foundation for designing amyloid peptides for specific applications by defining the structure-property-processing relationships of the de novo peptide-polymer blends.
Collapse
Affiliation(s)
- Xianjun Wang
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Malay Mondal
- Department
of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Penelope E. Jankoski
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Lisa K. Kemp
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Tristan D. Clemons
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
- Center
for
Molecular and Cellular Biosciences, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Vijayaraghavan Rangachari
- Department
of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
- Center
for
Molecular and Cellular Biosciences, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Sarah E. Morgan
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
2
|
Liu B, Zhang H, Qin X. Amyloid Fibrils and Their Applications: Current Status and Latest Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:255. [PMID: 39997818 PMCID: PMC11858031 DOI: 10.3390/nano15040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025]
Abstract
Amyloid fibrils are one of the important forms of protein aggregates, first discovered in the pathological brain tissues of patients with various neurodegenerative diseases. They are considered the core pathological markers of different neurodegenerative diseases. In recent years, research has found that multiple proteins or peptides dynamically assemble to form functional amyloid-like nanofibrils under physiological conditions, exhibiting excellent mechanical properties, high environmental stability, and self-healing ability. Therefore, they have become a class of functional biological nanomaterials with important development potential. This article systematically reviews the latest progress in the preparation, functionalization, and application of amyloid-like nanofibrils in engineering and provides an outlook on possible future development directions.
Collapse
Affiliation(s)
| | - Hongnan Zhang
- Key Laboratory of Textile Science & Technology, College of Textiles, Donghua University, Ministry of Education, Shanghai 200051, China; (B.L.); (X.Q.)
| | | |
Collapse
|
3
|
Wang X, Mondal M, Jankoski PE, Kemp LK, Clemons TD, Rangachari V, Morgan SE. Amyloid peptide - synthetic polymer blends with enhanced mechanical and biological properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605712. [PMID: 39211215 PMCID: PMC11361015 DOI: 10.1101/2024.07.29.605712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in utilizing amyloids to develop biomaterials is increasing due to their potential for biocompatibility, unique assembling morphology, mechanical stability, and biophysical properties. However, challenges include the complexity of peptide chemistry and the practical techniques required for processing amyloids into bulk materials. In this work, two decapeptides with fibrillar and globular morphologies were selected, blended with poly(ethylene oxide), and fabricated into composite mats via electrospinning. Notable enhancements in mechanical properties were observed, attributed to the uniform distribution of the decapeptide assemblies within the PEO matrix. Morphological differences, such as the production of thinner nanofibers, are attributed to the increased conductivity from the zwitterionic nature of the decapeptides. Blend rheology and post-processing analysis revealed how processing might affect the amyloid aggregation and secondary structure of the peptides. Both decapeptides demonstrated good biocompatibility and strong antioxidant activity, indicating their potential for safe and effective use as biomaterials. By evaluating these interdependencies, this research lays the foundation for understanding the structure-property-processing relationships of peptide-polymer blends and highlights the strong potential for developing applications in biotechnology.
Collapse
|
4
|
Behbahanipour M, Navarro S, Bárcenas O, Garcia-Pardo J, Ventura S. Bioengineered self-assembled nanofibrils for high-affinity SARS-CoV-2 capture and neutralization. J Colloid Interface Sci 2024; 674:753-765. [PMID: 38955007 DOI: 10.1016/j.jcis.2024.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred intense research efforts to develop new materials with antiviral activity. In this study, we genetically engineered amyloid-based nanofibrils for capturing and neutralizing SARS-CoV-2. Building upon the amyloid properties of a short Sup35 yeast prion sequence, we fused it to SARS-CoV-2 receptor-binding domain (RBD) capturing proteins, LCB1 and LCB3. By tuning the reaction conditions, we achieved the spontaneous self-assembly of the Sup35-LCB1 fusion protein into a highly homogeneous and well-dispersed amyloid-like fibrillar material. These nanofibrils exhibited high affinity for the SARS-CoV-2 RBD, effectively inhibiting its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, the primary entry point for the virus into host cells. We further demonstrate that this functional nanomaterial entraps and neutralizes SARS-CoV-2 virus-like particles (VLPs), with a potency comparable to that of therapeutic antibodies. As a proof of concept, we successfully fabricated patterned surfaces that selectively capture SARS-CoV-2 RBD protein on wet environments. Collectively, these findings suggest that these protein-only nanofibrils hold promise as disinfecting coatings endowed with selective SARS-CoV-2 neutralizing properties to combat viral spread or in the development of sensitive viral sampling and diagnostic tools.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
5
|
Wang W, Chu F, Zhang W, Xiao T, Teng J, Wang Y, He B, Ge B, Gao J, Ge H. Silver Mineralized Protein Hydrogel with Intrinsic Cell Proliferation Promotion and Broad-Spectrum Antimicrobial Properties for Accelerated Infected Wound Healing. Adv Healthc Mater 2024; 13:e2400047. [PMID: 38364079 DOI: 10.1002/adhm.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The presence of multidrug-resistant bacteria has challenged the clinical treatment of bacterial infection. There is a real need for the development of novel biocompatible materials with broad-spectrum antimicrobial activities. Antimicrobial hydrogels show great potential in infected wound healing but are still being challenged. Herein, broad-spectrum antibacterial and mechanically tunable amyloid-based hydrogels based on self-assembly and local mineralization of silver nanoparticles are reported. The mineralized hydrogels are biocompatible and have the advantages of sustained release of silver, prolonged antimicrobial effect, and improved adhesion capacity. Moreover, the mineralized hydrogels display a significant antimicrobial effect against both Gram-positive and Gram-negative bacteria in cells and mice by inducing membrane damage and reactive oxygen species toxicity in bacteria. In addition, the mineralized hydrogels can rapidly accelerate wound healing by the synergy between their antibacterial activity and intrinsic improvement for cell proliferation and migration. This study provides a modular approach to developing a multifunctional protein hydrogel platform based on biomolecule-coordinated self-assembly for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Weiqiang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Fengjiao Chu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Weifeng Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Tingting Xiao
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Jingjing Teng
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Yan Wang
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Bo He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jiajia Gao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Honghua Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
6
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
7
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
8
|
Sakono M, Nakamura M, Ohshima T, Miyakoshi A, Arai R, Minamihata K, Kamiya N. One-pot synthesis of fibrillar-shaped functional nanomaterial using microbial transglutaminase. J Biosci Bioeng 2023; 135:440-446. [PMID: 37088672 DOI: 10.1016/j.jbiosc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
Recently, functional nanowire production using amyloids as a scaffold for protein immobilization has attracted attention. However, protein immobilization on amyloid fibrils often caused protein inactivation. In this study, we investigated protein immobilization using enzymatic peptide ligation to suppress protein inactivation during immobilization. We attempted to immobilize functional molecules such as green fluorescent protein (GFP) and Nanoluc to a transthyretin (TTR) amyloid using microbial transglutaminase (MTG), which links the glutamine side chain to the primary amine. Linkage between amyloid fibrils and functional molecules was achieved through the MTG substrate sequence, and the functional molecules-loaded nanowires were successfully fabricated. We also found that the synthetic process from amyloidization to functional molecules immobilization could be achieved in a single-step procedure.All rights reserved.
Collapse
Affiliation(s)
- Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan.
| | - Mitsuki Nakamura
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Tatsuki Ohshima
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Ayano Miyakoshi
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Mootoka, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Behbahanipour M, Benoit R, Navarro S, Ventura S. OligoBinders: Bioengineered Soluble Amyloid-like Nanoparticles to Bind and Neutralize SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11444-11457. [PMID: 36890692 PMCID: PMC9969896 DOI: 10.1021/acsami.2c18305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become a primary health concern. Molecules that prevent viral entry into host cells by interfering with the interaction between SARS-CoV-2 spike (S) protein and the human angiotensin-converting enzyme 2 receptor (ACE2r) opened a promising avenue for virus neutralization. Here, we aimed to create a novel kind of nanoparticle that can neutralize SARS-CoV-2. To this purpose, we exploited a modular self-assembly strategy to engineer OligoBinders, soluble oligomeric nanoparticles decorated with two miniproteins previously described to bind to the S protein receptor binding domain (RBD) with high affinity. The multivalent nanostructures compete with the RBD-ACE2r interaction and neutralize SARS-CoV-2 virus-like particles (SC2-VLPs) with IC50 values in the pM range, preventing SC2-VLPs fusion with the membrane of ACE2r-expressing cells. Moreover, OligoBinders are biocompatible and significantly stable in plasma. Overall, we describe a novel protein-based nanotechnology that might find application in SARS-CoV-2 therapeutics and diagnostics.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Roger Benoit
- Laboratory
of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Susanna Navarro
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Salvador Ventura
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
10
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
11
|
Kokotidou C, Tsitouroudi F, Nistikakis G, Vasila M, Papanikolopoulou K, Kretsovali A, Mitraki A. Adenovirus Fibers as Ultra-Stable Vehicles for Intracellular Nanoparticle and Protein Delivery. Biomolecules 2022; 12:biom12020308. [PMID: 35204809 PMCID: PMC8869412 DOI: 10.3390/biom12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Protein-based carriers are promising vehicles for the intracellular delivery of therapeutics. In this study, we designed and studied adenovirus protein fiber constructs with potential applications as carriers for the delivery of protein and nanoparticle cargoes. We used as a basic structural framework the fibrous shaft segment of the adenovirus fiber protein comprising of residues 61–392, connected to the fibritin foldon trimerization motif at the C-terminal end. A fourteen-amino-acid biotinylation sequence was inserted immediately after the N-terminal, His-tagged end of the construct in order to enable the attachment of a biotin moiety in vivo. We report herein that this His-tag biotinylated construct folds into thermally and protease-stable fibrous nanorods that can be internalized into cells and are not cytotoxic. Moreover, they can bind to proteins and nanoparticles through the biotin–streptavidin interaction and mediate their delivery to cells. We demonstrate that streptavidin-conjugated gold nanoparticles can be transported into NIH3T3 fibroblast and HeLa cancer cell lines. Furthermore, two streptavidin-conjugated model proteins, alkaline phosphatase and horseradish peroxidase can be delivered into the cell cytoplasm in their enzymatically active form. This work is aimed at establishing the proof-of-principle for the rational engineering of diverse functionalities onto the initial protein structural framework and the use of adenovirus fiber-based proteins as nanorods for the delivery of nanoparticles and model proteins. These constructs could constitute a stepping stone for the development of multifunctional and modular fibrous nanorod platforms that can be tailored to applications at the sequence level.
Collapse
Affiliation(s)
- Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
- Institute of Electronic Structure and Laser (IESL), FORTH, 70013 Heraklion, Crete, Greece;
| | - Fani Tsitouroudi
- Institute of Electronic Structure and Laser (IESL), FORTH, 70013 Heraklion, Crete, Greece;
| | - Georgios Nistikakis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
- Institute of Electronic Structure and Laser (IESL), FORTH, 70013 Heraklion, Crete, Greece;
| | - Marita Vasila
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
| | - Katerina Papanikolopoulou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology (IMBB), FORTH, 70013 Heraklion, Crete, Greece;
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
- Institute of Electronic Structure and Laser (IESL), FORTH, 70013 Heraklion, Crete, Greece;
- Correspondence:
| |
Collapse
|