1
|
Zhao J, Zhang R, Zhang Y, Piao H, Ren Z, Zhang H, Fan T, Jiang F, Cai Z, Fan L. Biobased Polybutyrolactam Nanofiber with Excellent Biodegradability and Cell Growth for Sustainable Healthcare Textiles. Biomacromolecules 2024; 25:5745-5757. [PMID: 39173040 DOI: 10.1021/acs.biomac.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The white pollution caused by unsustainable materials is a significant challenge around the globe. Here, a novel and fully biobased polybutyrolactam (PBY) nanofiber membrane was fabricated via the electrospinning method. As-spun PBY nanofiber membranes have good thermal stability, high porosity of up to 71.94%, and excellent wetting behavior. The biodegradability in soil, UV aging irradiation, and seawater was investigated. The PBY nanofiber membrane is almost completely degraded in the soil within 80 days, showing excellent degradability. More interestingly, γ-aminobutyric acid, as a healthcare agent with intrinsic hypotensive, tranquilizing, diuretic, and antidiabetic efficacy, can be detected in the degradation intermediates. In addition, the PBY nanofiber membrane also exhibits antibacterial ability against Escherichia coli. As a fully biomass-derived material, the PBY membrane has excellent biodegradable performance in various environments as well as negligible cytotoxicity and commendable cell proliferation. Our PBY nanofiber membrane shows great potential as biodegradable packaging and in vitro healthcare materials.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Run Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yajing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hongwei Piao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhibo Ren
- Textile Testing Center, China Textile Information Center, Beijing 100025, China
| | - Huan Zhang
- Textile Testing Center, China Textile Information Center, Beijing 100025, China
| | - Tingting Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Feng Jiang
- State Key Laboratory of Bio-based Fiber Manufacture Technology, China Textile Academy, Beijing 100025, P.R. China
| | - Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
2
|
Fan L, Cai Z, Zhao J, Wang X, Li JL. Facile In Situ Assembly of Nanofibers within Three-Dimensional Porous Matrices with Arbitrary Characteristics for Creating Biomimetic Architectures. NANO LETTERS 2023; 23:8602-8609. [PMID: 37706635 DOI: 10.1021/acs.nanolett.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
It is challenging to recapitulate the natural extracellular matrix's hierarchical nano/microfibrous three-dimensional (3D) structure with multilevel pores, good mechanical and hydrophilic properties, and excellent bioactivity for designing and developing advanced biomimetic materials. This work reports a new facile strategy for the scalable manufacturing of such a 3D architecture. Natural polymers in an aqueous solution are interpenetrated into a 3D microfibrous matrix with arbitrary shapes and property characteristics to self-assemble in situ into a nanofibrous network. The collagen fiber-like hierarchical structure and interconnected multilevel pores are achieved by self-assembly of the formed nanofibers within the 3D matrix, triggered by a simple cross-linking treatment. The as-prepared alginate/polypropylene biomimetic matrices are bioactive and have a tunable mechanical property (compressive modulus from ∼17 to ∼24 kPa) and a tunable hydrophilicity (water contact angle from ∼94° to 63°). This facile and versatile strategy allows eco-friendly and scalable manufacturing of diverse biomimetic matrices or modification of any existing porous matrices using different polymers.
Collapse
Affiliation(s)
- Linpeng Fan
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Zengxiao Cai
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jing-Liang Li
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
3
|
Cai Z, Haque ANMA, Dhandapani R, Naebe M. Sustainable Cotton Gin Waste/Polycaprolactone Bio-Plastic with Adjustable Biodegradation Rate: Scale-Up Production through Compression Moulding. Polymers (Basel) 2023; 15:polym15091992. [PMID: 37177140 PMCID: PMC10180961 DOI: 10.3390/polym15091992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cotton gin trash (CGT), a lignocellulosic waste generated during cotton fibre processing, has recently received significant attention for production of composite bio-plastics. However, earlier studies were limited to either with biodegradable polymers, through small-scale solution-casting method, or using industrially adaptable extrusion route, but with non-biodegradable polymers. In this study, a scale-up production of completely biodegradable CGT composite plastic film with adjustable biodegradation rate is proposed. First using a twin screw extruder, the prepared CGT powder was combined with polycaprolactone (PCL) to form pellets, and then using the compressing moulding, the pellets were transformed into bio-plastic composite films. Hydrophilic polyethylene glycol (PEG) was used as a plasticiser in the mixture and its impact on the biodegradation rate was analysed. The morphology of CGT bio-plastic composite films showed even distribution of CGT powder within the PCL matrix. The CGT incorporation improved the UV resistance, thermal stability, and Young's modulus of PCL material. Further, the flexibility and mixing properties of the composites were improved by PEG. Overall, this study demonstrated a sustainable production method of CGT bio-plastic films using the whole CGT and without any waste residue produced, where the degradation of the produced composite films can be adjusted to minimise the environmental impact.
Collapse
Affiliation(s)
- Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | | | | | - Maryam Naebe
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
4
|
Ramadas M, Abimanyu R, Ferreira JMF, Ballamurugan AM. Fabrication and biological evaluation of three-dimensional (3D) Mg substituted bi-phasic calcium phosphate porous scaffolds for hard tissue engineering. RSC Adv 2022; 12:33706-33715. [PMID: 36505699 PMCID: PMC9685373 DOI: 10.1039/d2ra04009c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
This work reports on the fabrication of three-dimensional (3D) magnesium substituted bi-phasic calcium phosphate (Mg-BCP) scaffolds by gel-casting, their structural and physico-chemical characterization, and on the assessment of their in vitro and in vivo performances. The crystalline phase assemblage, chemical functional groups and porous morphology features of the scaffolds were evaluated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM), respectively. The sintered scaffolds revealed an interconnected porosity with pore sizes ranging from 4.3 to 7.28 μm. The scaffolds exhibited good biomineralization activity upon immersion in simulated body fluid (SBF), while an in vitro study using MG-63 cell line cultures confirmed their improved biocompatibility, cell proliferation and bioactivity. Bone grafting of 3D scaffolds was performed in non-load bearing bone defects surgically created in tibia of rabbits, used as animal model. Histological and radiological observations indicated the successful restoration of bone defects. The overall results confirmed the suitability of the scaffolds to be further tested as synthetic bone grafts in bone regeneration surgeries and in bone tissue engineering applications.
Collapse
Affiliation(s)
- Munusamy Ramadas
- Department of Nanoscience and Technology, Bharathiar UniversityCoimbatore 641046India
| | - Ravichandran Abimanyu
- Department of Nanoscience and Technology, Bharathiar UniversityCoimbatore 641046India
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of AveiroAveiroPortugal
| | | |
Collapse
|