1
|
Zhou Z, Wang Y, Dong T, Song L, Pan P, Sun T, Bai J, Yun X. Poly(lactic acid)-based materials with enhanced gas permeability for modified atmosphere packaging of Chinese bayberry. Int J Biol Macromol 2025; 299:140202. [PMID: 39848377 DOI: 10.1016/j.ijbiomac.2025.140202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Biodegradable plastics are increasingly utilized in packaging, driven by green chemistry and environmental responsibility. Among them, poly(L-lactic acid) (PLLA) stands out due to its biodegradability and biocompatibility. However, its limited gas permeability and selectivity hinder its application in produce preservation. To address this, polyethylene glycol (PEG), which enhances CO2 selectivity, and polydimethylsiloxane (PDMS), known for its large free volume and high gas diffusion coefficients, were incorporated into PLLA to synthesize two triblock copolymers, PL-E-LA and PL-D-LA. Films with varying block ratios were prepared via solution casting. The results showed that elongation at break for PL-E-LA and PL-D-LA increased by 2.5-fold and 8.7-fold, respectively, while their crystallization temperatures (Tcc) decreased to 79.4 °C and 108.3 °C. Scanning electron microscopy (SEM) revealed spherical phase separation in PL-D-LA and finger-like structures in PL-E-LA. By blending these copolymers, gas permeability and the CO2/O2 permeability ratio were optimized. At 5 °C, the CO2/O2 permeability ratio of PL(D25/E75)LA films reached 9.1, meeting the ideal range (8-10:1) for fresh produce packaging. Atomic force microscopy (AFM) confirmed the PL(D25/E75)LA film exhibited the lowest surface height (52 nm) and roughness (Ra = 4.051), with a fine, uniform phase separation that facilitated gas diffusion and optimized permeability. The application of PL(D25/E75)LA to Chinese bayberry preservation effectively reduced weight loss, delayed firmness degradation, and maintained quality attributes such as color, sugar, and acid content, demonstrating its superior preservation performance. This study highlights the potential of PLLA-based packaging materials with optimized phase separation for produce storage and transportation.
Collapse
Affiliation(s)
- Ziyi Zhou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China
| | - Yangyang Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China; Hohhot Huimin District Center for Disease Control and Prevention, Hohhot, Inner Mongolia 010030, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China
| | - Lijun Song
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Tao Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China
| | - Jiaxin Bai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China.
| |
Collapse
|
2
|
Li J, Hao Y, Wang H, Zhang M, He J, Ni P. Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51876-51898. [PMID: 39311719 DOI: 10.1021/acsami.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
Collapse
Affiliation(s)
- Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Steeves M, Combita D, Whelan W, Ahmed M. Chemotherapeutics-Loaded Poly(Dopamine) Core-Shell Nanoparticles for Breast Cancer Treatment. J Pharmacol Exp Ther 2024; 390:78-87. [PMID: 38296644 DOI: 10.1124/jpet.123.001965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Chemophotothermal therapy is an emerging treatment of metastatic and drug-resistant cancer anomalies. Among various photothermal agents tested, poly(dopamine) provides an excellent biocompatible alternative that can be used to develop novel drug delivery carriers for cancer treatment. This study explores the synthesis of starch-encapsulated, poly(dopamine)-coated core-shell nanoparticles in a one-pot synthesis approach and by surfactant-free approach. The nanoparticles produced are embellished with polymeric stealth coatings and are tested for their physiologic stability, photothermal properties, and drug delivery in metastatic triple-negative breast cancer cell (TNBC) lines. Our results indicate that stealth polymer-coated nanoparticles exhibit superior colloidal stability under physiologic conditions, and are excellent photothermal agents, as determined by the increase in temperature of solution in the presence of nanoparticles, upon laser irradiation. The chemotherapeutic drug-loaded nanoparticles also showed concentration-dependent toxicities in TNBC and in a brain metastatic cell line. SIGNIFICANCE STATEMENT: This study develops, for the first time, biocompatible core-shell nanoparticles in a template-free approach that can serve as a drug delivery carrier and as photothermal agents for cancer treatment.
Collapse
Affiliation(s)
- Miranda Steeves
- Departments of Chemistry (M.S., D.C., M.A.) and Physics (W.W.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Diego Combita
- Departments of Chemistry (M.S., D.C., M.A.) and Physics (W.W.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - William Whelan
- Departments of Chemistry (M.S., D.C., M.A.) and Physics (W.W.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Marya Ahmed
- Departments of Chemistry (M.S., D.C., M.A.) and Physics (W.W.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
4
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
5
|
Jahan S, Doyle C, Ghimire A, Combita D, Rainey JK, Wagner BD, Ahmed M. Elucidating the Role of Optical Activity of Polymers in Protein-Polymer Interactions. Polymers (Basel) 2023; 16:65. [PMID: 38201730 PMCID: PMC10781056 DOI: 10.3390/polym16010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Proteins are biomolecules with potential applications in agriculture, food sciences, pharmaceutics, biotechnology, and drug delivery. Interactions of hydrophilic and biocompatible polymers with proteins may impart proteolytic stability, improving the therapeutic effects of biomolecules and also acting as excipients for the prolonged storage of proteins under harsh conditions. The interactions of hydrophilic and stealth polymers such as poly(ethylene glycol), poly(trehalose), and zwitterionic polymers with various proteins are well studied. This study evaluates the molecular interactions of hydrophilic and optically active poly(vitamin B5 analogous methacrylamide) (poly(B5AMA)) with model proteins by fluorescence spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and circular dichroism (CD) spectroscopy analysis. The optically active hydrophilic polymers prepared using chiral monomers of R-(+)- and S-(-)-B5AMA by the photo-iniferter reversible addition fragmentation chain transfer (RAFT) polymerization showed concentration-dependent weak interactions of the polymers with bovine serum albumin and lysozyme proteins. Poly(B5AMA) also exhibited a concentration-dependent protein stabilizing effect at elevated temperatures, and no effect of the stereoisomers of polymers on protein thermal stability was observed. NMR analysis, however, showed poly(B5AMA) stereoisomer-dependent changes in the secondary structure of proteins.
Collapse
Affiliation(s)
- Samin Jahan
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Catherine Doyle
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.); (J.K.R.)
| | - Diego Combita
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.); (J.K.R.)
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Brian D. Wagner
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
6
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
7
|
Wei Q, Liu S, Huang X, Xin H, Ding J. Immunologically effective biomaterials-enhanced vaccines against infection of pathogenic microorganisms. BIOSAFETY AND HEALTH 2023; 5:45-61. [PMID: 40078604 PMCID: PMC11894984 DOI: 10.1016/j.bsheal.2022.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Infectious diseases are severe public health events that threaten global health. Prophylactic vaccines have been considered as the most effective strategy to train the immune system to recognize and clear pathogenic infections. However, the existing vaccines against infectious diseases have several limitations, such as difficulties in mass manufacturing and storage, weak immunogenicity, and low efficiency of available adjuvants. Biomaterials, especially functional polymers, are expected to break through these bottlenecks based on the advantages of biocompatibility, degradability, controlled synthesis, easy modification, precise targeting, and immune modulation, which are excellent carriers and adjuvants of vaccines. This review mainly summarizes the application of immunologically effective polymers-enhanced vaccines against viruses- and bacteria-related infectious diseases and predicted their potential improvements.
Collapse
Affiliation(s)
- Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Shixian Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Xu Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
8
|
Moncalvo F, Lacroce E, Franzoni G, Altomare A, Fasoli E, Aldini G, Sacchetti A, Cellesi F. Selective Protein Conjugation of Poly(glycerol monomethacrylate) and Poly(polyethylene glycol methacrylate) with Tunable Topology via Reductive Amination with Multifunctional ATRP Initiators for Activity Preservation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filippo Moncalvo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giulia Franzoni
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
9
|
Pelosi C, Arrico L, Zinna F, Wurm FR, Di Bari L, Tinè MR. A circular dichroism study of the protective role of polyphosphoesters polymer chains in polyphosphoester-myoglobin conjugates. Chirality 2022; 34:1257-1265. [PMID: 35713334 PMCID: PMC9544571 DOI: 10.1002/chir.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Protein‐polymer conjugates are a blooming class of hybrid systems with high biomedical potential. Despite a plethora of papers on their biomedical properties, the physical–chemical characterization of many protein‐polymer conjugates is missing. Here, we evaluated the thermal stability of a set of fully‐degradable polyphosphoester‐protein conjugates by variable temperature circular dichroism, a common but powerful technique. We extensively describe their thermodynamic stability in different environments (in physiological buffer or in presence of chemical denaturants, e.g., acid or urea), highlighting the protective role of the polymer in preserving the protein from denaturation. For the first time, we propose a simple but effective protocol to achieve useful information on these systems in vitro, useful to screen new samples in their early stages.
Collapse
Affiliation(s)
- Chiara Pelosi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Maria R Tinè
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| |
Collapse
|
10
|
Protein-friendly atom transfer radical polymerisation of glycerol(monomethacrylate) in buffer solution for the synthesis of a new class of polymer bioconjugates. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Pelosi C, Constantinescu I, Son HH, Tinè MR, Kizhakkedathu JN, Wurm FR. Blood Compatibility of Hydrophilic Polyphosphoesters. ACS APPLIED BIO MATERIALS 2022; 5:1151-1158. [PMID: 35201742 PMCID: PMC8941511 DOI: 10.1021/acsabm.1c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
Polyphosphoesters (PPEs) are a class of versatile degradable polymers. Despite the high potential of this class of polymers in biomedical applications, little is known about their blood interaction and compatibility. We evaluated the hemocompatibility of water-soluble PPEs (with different hydrophilicities and molar masses) and PPE-coated model nanocarriers. Overall, we identified high hemocompatibility of PPEs, comparable to poly(ethylene glycol) (PEG), currently used for many applications in nanomedicine. Hydrophilic PPEs caused no significant changes in blood coagulation, negligible platelet activation, the absence of red blood cells lysis, or aggregation. However, when a more hydrophobic copolymer was studied, some changes in the whole blood clot strength at the highest concentration were detected, but only concentrations above that are typically used for biomedical applications. Also, the PPE-coated model nanocarriers showed high hemocompatibility. These results contribute to defining hydrophilic PPEs as a promising platform for degradable and biocompatible materials in the biomedical field.
Collapse
Affiliation(s)
- Chiara Pelosi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi 13, 56120 Pisa, Italy
| | - Iren Constantinescu
- Center
for Blood Research, Life Sciences Centre, Department of Pathology
and Laboratory Medicine, University of British
Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Helena H. Son
- Center
for Blood Research, Life Sciences Centre, Department of Pathology
and Laboratory Medicine, University of British
Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maria Rosaria Tinè
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi 13, 56120 Pisa, Italy
| | - Jayachandran N. Kizhakkedathu
- Center
for Blood Research, Life Sciences Centre, Department of Pathology
and Laboratory Medicine, University of British
Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- School
of Biomedical Engineering, University of
British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Frederik R. Wurm
- Sustainable
Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| |
Collapse
|
12
|
Guazzelli E, Lusiani N, Monni G, Oliva M, Pelosi C, Wurm FR, Pretti C, Martinelli E. Amphiphilic Polyphosphonate Copolymers as New Additives for PDMS-Based Antifouling Coatings. Polymers (Basel) 2021; 13:3414. [PMID: 34641229 PMCID: PMC8512855 DOI: 10.3390/polym13193414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023] Open
Abstract
Poly(ethyl ethylene phosphonate)-based methacrylic copolymers containing polysiloxane methacrylate (SiMA) co-units are proposed as surface-active additives as alternative solutions to the more investigated polyzwitterionic and polyethylene glycol counterparts for the fabrication of novel PDMS-based coatings for marine antifouling applications. In particular, the same hydrophobic SiMA macromonomer was copolymerized with a methacrylate carrying a poly(ethyl ethylene phosphonate) (PEtEPMA), a phosphorylcholine (MPC), and a poly(ethylene glycol) (PEGMA) side chain to obtain non-water soluble copolymers with similar mole content of the different hydrophilic units. The hydrolysis of poly(ethyl ethylene phosphonate)-based polymers was also studied in conditions similar to those of the marine environment to investigate their potential as erodible films. Copolymers of the three classes were blended into a condensation cure PDMS matrix in two different loadings (10 and 20 wt%) to prepare the top-coat of three-layer films to be subjected to wettability analysis and bioassays with marine model organisms. Water contact angle measurements showed that all of the films underwent surface reconstruction upon prolonged immersion in water, becoming much more hydrophilic. Interestingly, the extent of surface modification appeared to be affected by the type of hydrophilic units, showing a tendency to increase according to the order PEGMA < MPC < PEtEPMA. Biological tests showed that Ficopomatus enigmaticus release was maximized on the most hydrophilic film containing 10 wt% of the PEtEP-based copolymer. Moreover, coatings with a 10 wt% loading of the copolymer performed better than those containing 20 wt% for the removal of both Ficopomatus and Navicula, independent from the copolymer nature.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Niccolò Lusiani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Gianfranca Monni
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy; (G.M.); (C.P.)
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata ‘‘G. Bacci’’, 57128 Livorno, Italy;
| | - Chiara Pelosi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy; (G.M.); (C.P.)
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| |
Collapse
|
13
|
Thermodynamic Evaluation of the Interactions between Anticancer Pt(II) Complexes and Model Proteins. Molecules 2021; 26:molecules26082376. [PMID: 33921819 PMCID: PMC8072931 DOI: 10.3390/molecules26082376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
In this work, we have analysed the binding of the Pt(II) complexes ([PtCl(4′-phenyl-2,2′:6′,2″-terpyridine)](CF3SO3) (1), [PtI(4′-phenyl-2,2′:6′,2″-terpyridine)](CF3SO3) (2) and [PtCl(1,3-di(2-pyridyl)benzene) (3)] with selected model proteins (hen egg-white lysozyme, HEWL, and ribonuclease A, RNase A). Platinum coordination compounds are intensively studied to develop improved anticancer agents. In this regard, a critical issue is the possible role of Pt-protein interactions in their mechanisms of action. Multiple techniques such as differential scanning calorimetry (DSC), electrospray ionization mass spectrometry (ESI-MS) and UV-Vis absorbance titrations were used to enlighten the details of the binding to the different biosubstrates. On the one hand, it may be concluded that the affinity of 3 for the proteins is low. On the other hand, 1 and 2 strongly bind them, but with major binding mode differences when switching from HEWL to RNase A. Both 1 and 2 bind to HEWL with a non-specific (DSC) and non-covalent (ESI-MS) binding mode, dominated by a 1:1 binding stoichiometry (UV-Vis). ESI-MS data indicate a protein-driven chloride loss that does not convert into a covalent bond, likely due to the unfavourable complexes’ geometries and steric hindrance. This result, together with the significant changes of the absorbance profiles of the complex upon interaction, suggest an electrostatic binding mode supported by some stacking interaction of the aromatic ligand. Very differently, in the case of RNase A, slow formation of covalent adducts occurs (DSC, ESI-MS). The reactivity is higher for the iodo-compound 2, in agreement with iodine lability higher than chlorine.
Collapse
|