1
|
Mariano M, Naseri N, Nascimento DMD, Franqui L, Seabra AB, Mathew AP, Bernardes JS. Calcium Cross-Linked Cellulose Nanofibrils: Hydrogel Design for Local and Controlled Nitric Oxide Release. ACS APPLIED BIO MATERIALS 2024; 7:8377-8388. [PMID: 39568116 DOI: 10.1021/acsabm.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Nitric oxide (NO) holds promise for wound healing due to its antimicrobial properties and role in promoting vasodilation and tissue regeneration. The local delivery of NO to target cells or organs offers significant potential in numerous biomedical applications, especially when NO donors are integrated into nontoxic viscous matrices. This study presents the development of robust cellulose nanofibril (CNF) hydrogels designed to control the release of nitric oxide (NO) generated in situ from a NO-donor molecule (S-nitrosoglutathione, GSNO) obtained from the nitrosation of its precursor molecule glutathione (GSH). CNF, efficiently isolated from sugar cane bagasse, exhibited a high aspect ratio and excellent colloidal stability in water. Although depletion forces could be observed upon the addition of GSH, this effect did not significantly alter the morphology of the CNF network at low GSH concentrations (<20 mM). Ionic cross-linking with Ca2+ resulted in nontoxic and robust hydrogels (elastic moduli ranging from 300 to 3000 Pa) at low CNF solid content. The release rate of NO from GSNO decreased in CNF from 1.61 to 0.40 mmol. L-1·h-1 when the nanofibril content raised from 0.3 to 1.0 wt %. The stabilization effect monitored for 16 h was assigned to hydrogel mesh size, which was easily tailored by modifying the concentration of CNF in the initial suspension. These results highlight the potential of CNF-based hydrogels in biomedical applications requiring a precise NO delivery.
Collapse
Affiliation(s)
- Marcos Mariano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Narges Naseri
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Diego Magalhães Do Nascimento
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Lidiane Franqui
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Aji P Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Juliana Silva Bernardes
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
2
|
Berglund L, Rosenstock Völtz L, Gehrmann T, Antonopoulou I, Cristescu C, Xiong S, Dixit P, Martín C, Sundman O, Oksman K. The use of spent mushroom substrate as biologically pretreated wood and its fibrillation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123338. [PMID: 39549456 DOI: 10.1016/j.jenvman.2024.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Utilization of biomass and reuse of industrial by-products and their sustainable and resource-efficient development into products that are inherently non-toxic is important to reduce the use of hazardous substances in the design, manufacture and application of biomaterials. The hypothesis in this study is that spent mushroom substrate (SMS), a by-product from mushroom production, has already undergone a biological pretreatment and thus, can be used directly as a starting material for fibrillation into value-added and functional biomaterial, without the use of toxic substances. The study show that SMS can be effectively fibrillated at a very high concentration of 6.5 wt % into fibrils using an energy demand of only 1.7 kWh kg-1, compared to commercial and chemically pretreated wood pulp at 8 kWh kg-1, under same processing conditions. SMS is a promising resource for fibrillation with natural antioxidant activity and network formation ability, which are of interest to explore further in applications such as packaging. The study shows that biological pretreatment can offer lower environmental impact related to toxic substances emitted to the environment and thus contribute to reduced impacts on categories such as water organisms, human health, terrestrial organisms, and terrestrial plants compared to chemical pretreatments.
Collapse
Affiliation(s)
- Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden.
| | - Luisa Rosenstock Völtz
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden; WWSC Wallenberg Wood Science Center, Luleå University of Technology, Sweden
| | - Timon Gehrmann
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Io Antonopoulou
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Carmen Cristescu
- Department of Forest Biomaterial and Technology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Shaojun Xiong
- Department of Forest Biomaterial and Technology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Pooja Dixit
- Department of Chemistry, Umeå University, SE-901, 87 Umeå, Sweden
| | - Carlos Martín
- Department of Chemistry, Umeå University, SE-901, 87 Umeå, Sweden; Department of Biotechnology, Inland Norway University of Applied Sciences, N-2317, Hamar, Norway
| | - Ola Sundman
- Department of Chemistry, Umeå University, SE-901, 87 Umeå, Sweden
| | - Kristiina Oksman
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden; WWSC Wallenberg Wood Science Center, Luleå University of Technology, Sweden; Department of Mechanical & Industrial Engineering (MIE), University of Toronto, M5S 3G8, Toronto, Canada
| |
Collapse
|
3
|
Selvaraj S, Chauhan A, Dutta V, Verma R, Rao SK, Radhakrishnan A, Ghotekar S. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications. Int J Biol Macromol 2024; 265:130991. [PMID: 38521336 DOI: 10.1016/j.ijbiomac.2024.130991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The most prevalent carbohydrate on Earth is cellulose, a polysaccharide composed of glucose units that may be found in diverse sources, such as cell walls of wood and plants and some bacterial and algal species. The inherent availability of this versatile material provides a natural pathway for exploring and identifying novel uses. This study comprehensively analyzes cellulose and its derivatives, exploring their structural and biochemical features and assessing their wide-ranging applications in tissue fabrication, surgical dressings, and pharmaceutical delivery systems. The use of diverse cellulose particles as fundamental components gives rise to materials with distinct microstructures and characteristics, fulfilling the requirements of various biological applications. Although cellulose boasts substantial potential across various sectors, its exploration has predominantly unfolded within industrial realms, leaving the biomedical domain somewhat overlooked in its initial stages. This investigation, therefore, endeavors to shed light on the contemporary strides made in synthesizing cellulose and its derivatives. These innovative techniques give rise to distinctive attributes, presenting a treasure trove of advantages for their compelling integration into the intricate tapestry of biomedical applications.
Collapse
Affiliation(s)
- Satheesh Selvaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Ankush Chauhan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vishal Dutta
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ritesh Verma
- Department of Physics, Amity University, Gurugram, Haryana 122413, India
| | - Subha Krishna Rao
- Centre for Nanoscience and Nanotechnology, International Research Centre, Sathyabama Institute for Science and Technology, Chennai 600119, India
| | - Arunkumar Radhakrishnan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa 396230, UT of DNH & DD, India.
| |
Collapse
|
4
|
Muhammad A, Kidanemariam A, Lee D, Duong Pham TT, Park J. Durability of antimicrobial agent on nanofiber: A collective review from 2018 to 2022. J IND ENG CHEM 2024; 130:1-24. [DOI: 10.1016/j.jiec.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Baş Y, Berglund L, Niittylä T, Zattarin E, Aili D, Sotra Z, Rinklake I, Junker J, Rakar J, Oksman K. Preparation and Characterization of Softwood and Hardwood Nanofibril Hydrogels: Toward Wound Dressing Applications. Biomacromolecules 2023; 24:5605-5619. [PMID: 37950687 PMCID: PMC10716857 DOI: 10.1021/acs.biomac.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
Hydrogels of cellulose nanofibrils (CNFs) are promising wound dressing candidates due to their biocompatibility, high water absorption, and transparency. Herein, two different commercially available wood species, softwood and hardwood, were subjected to TEMPO-mediated oxidation to proceed with delignification and oxidation in a one-pot process, and thereafter, nanofibrils were isolated using a high-pressure microfluidizer. Furthermore, transparent nanofibril hydrogel networks were prepared by vacuum filtration. Nanofibril properties and network performance correlated with oxidation were investigated and compared with commercially available TEMPO-oxidized pulp nanofibrils and their networks. Softwood nanofibril hydrogel networks exhibited the best mechanical properties, and in vitro toxicological risk assessment showed no detrimental effect for any of the studied hydrogels on human fibroblast or keratinocyte cells. This study demonstrates a straightforward processing route for direct oxidation of different wood species to obtain nanofibril hydrogels for potential use as wound dressings, with softwood having the most potential.
Collapse
Affiliation(s)
- Yağmur Baş
- Division
of Materials Science, Luleå University
of Technology, SE-971 87 Luleå, Sweden
| | - Linn Berglund
- Division
of Materials Science, Luleå University
of Technology, SE-971 87 Luleå, Sweden
| | - Totte Niittylä
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Elisa Zattarin
- Laboratory
of Molecular Materials, Division of Biophysics and Biotechnology,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Daniel Aili
- Laboratory
of Molecular Materials, Division of Biophysics and Biotechnology,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Zeljana Sotra
- Center
for Disaster Medicine and Traumatology, Department of Biomedical and
Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Ivana Rinklake
- Center
for Disaster Medicine and Traumatology, Department of Biomedical and
Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Johan Junker
- Center
for Disaster Medicine and Traumatology, Department of Biomedical and
Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Jonathan Rakar
- Center
for Disaster Medicine and Traumatology, Department of Biomedical and
Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Kristiina Oksman
- Division
of Materials Science, Luleå University
of Technology, SE-971 87 Luleå, Sweden
- Department
of Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
6
|
Berglund L, Squinca P, Baş Y, Zattarin E, Aili D, Rakar J, Junker J, Starkenberg A, Diamanti M, Sivlér P, Skog M, Oksman K. Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications. Biomacromolecules 2023; 24:2264-2277. [PMID: 37097826 PMCID: PMC10170512 DOI: 10.1021/acs.biomac.3c00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The self-assembly of nanocellulose in the form of cellulose nanofibers (CNFs) can be accomplished via hydrogen-bonding assistance into completely bio-based hydrogels. This study aimed to use the intrinsic properties of CNFs, such as their ability to form strong networks and high absorption capacity and exploit them in the sustainable development of effective wound dressing materials. First, TEMPO-oxidized CNFs were separated directly from wood (W-CNFs) and compared with CNFs separated from wood pulp (P-CNFs). Second, two approaches were evaluated for hydrogel self-assembly from W-CNFs, where water was removed from the suspensions via evaporation through suspension casting (SC) or vacuum-assisted filtration (VF). Third, the W-CNF-VF hydrogel was compared to commercial bacterial cellulose (BC). The study demonstrates that the self-assembly via VF of nanocellulose hydrogels from wood was the most promising material as wound dressing and displayed comparable properties to that of BC and strength to that of soft tissue.
Collapse
Affiliation(s)
- Linn Berglund
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE 97187 Luleå, Sweden
| | - Paula Squinca
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE 97187 Luleå, Sweden
- Embrapa Instrumentation, Rua XV de Novembro 1452, 13561-206 São Carlos, São Paulo, Brazil
| | - Yağmur Baş
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE 97187 Luleå, Sweden
| | - Elisa Zattarin
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83 Linköping, Sweden
| | - Daniel Aili
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83 Linköping, Sweden
| | - Jonathan Rakar
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Johan Junker
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Annika Starkenberg
- Center for Disaster Medicine and Traumatology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Mattia Diamanti
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE 97187 Luleå, Sweden
| | | | | | - Kristiina Oksman
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE 97187 Luleå, Sweden
- Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, ON M5S 3G8 Toronto, Canada
- Wallenberg Wood Science Center (WWSC), Luleå University of Technology, SE 97187 Luleå, Sweden
| |
Collapse
|
7
|
Bakhshandeh B, Ranjbar N, Abbasi A, Amiri E, Abedi A, Mehrabi M, Dehghani Z, Pennisi CP. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. Bioeng Transl Med 2023; 8:e10383. [PMID: 36925674 PMCID: PMC10013802 DOI: 10.1002/btm2.10383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue engineering (TE) is currently considered a cutting-edge discipline that offers the potential for developing treatments for health conditions that negatively affect the quality of life. This interdisciplinary field typically involves the combination of cells, scaffolds, and appropriate induction factors for the regeneration and repair of damaged tissue. Cell fate decisions, such as survival, proliferation, or differentiation, critically depend on various biochemical and biophysical factors provided by the extracellular environment during developmental, physiological, and pathological processes. Therefore, understanding the mechanisms of action of these factors is critical to accurately mimic the complex architecture of the extracellular environment of living tissues and improve the efficiency of TE approaches. In this review, we recapitulate the effects that biochemical and biophysical induction factors have on various aspects of cell fate. While the role of biochemical factors, such as growth factors, small molecules, extracellular matrix (ECM) components, and cytokines, has been extensively studied in the context of TE applications, it is only recently that we have begun to understand the effects of biophysical signals such as surface topography, mechanical, and electrical signals. These biophysical cues could provide a more robust set of stimuli to manipulate cell signaling pathways during the formation of the engineered tissue. Furthermore, the simultaneous application of different types of signals appears to elicit synergistic responses that are likely to improve functional outcomes, which could help translate results into successful clinical therapies in the future.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Nika Ranjbar
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Elahe Amiri
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Mohammad‐Reza Mehrabi
- Department of Microbial Biotechnology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Dehghani
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| |
Collapse
|
8
|
Alinezhad Sardareh E, Shahzeidi M, Salmanifard Ardestani MT, Mousavi-Khattat M, Zarepour A, Zarrabi A. Antimicrobial Activity of Blow Spun PLA/Gelatin Nanofibers Containing Green Synthesized Silver Nanoparticles against Wound Infection-Causing Bacteria. Bioengineering (Basel) 2022; 9:518. [PMID: 36290486 PMCID: PMC9599005 DOI: 10.3390/bioengineering9100518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
One of the main challenges in wound healing is the wound infection due to various causes, of which moisture is the most important reason. Owing to this fact, wound dressings that can collect wound moisture in addition to showing antibacterial properties have provided an important basis for wound healing research. In this study, gelatin and poly lactic acid (PLA) polymers were used in a wound dressing textile to provide gelation and structure strength properties, respectively. Meanwhile, silver nanoparticles (SNPs) synthesized through the green method were integrated into these fibers to provide the formed textile with antibacterial properties. Nanoparticles were made using donkey dung extract, and nanofibers were produced by the solution blow spinning method which has high production efficiency and low energy consumption among spinning methods. The produced nanoparticles were characterized and evaluated by UV-Vis, DLS, XRD, and FTIR methods, and the production of silver nanoparticles that were coated with metabolites in the extract was proven. In addition, the morphology and diameter of the resulted fibers and presence of nanoparticles were confirmed by the SEM method. The size and size distribution of the synthesized fibers were determined through analyzing SEM results. Gelatin nanofibers demonstrated a mean size of 743 nm before and 773 nm after nanoparticle coating. PLA nanofibers demonstrated a mean size of 57 nm before and 182 nm after nanoparticle coating. Finally, 335 nm was the mean diameter size of gelatin/PLA/SNPs nanofibers. Also, the textiles synthesized by PLA and gelatin which contained silver nanoparticles showed higher antibacterial activity against both gram-positive and gram-negative species compared to PLA and gelatin tissues without nanoparticles. Cytotoxicity test on L929 cells showed that silver nanoparticles incorporated textiles of PLA and gelatin show a very low level and non-significant toxicity compared to the free particles.
Collapse
Affiliation(s)
- Elham Alinezhad Sardareh
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan 83517-65851, Iran
| | - Moloud Shahzeidi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 81593-58686, Iran
| | | | - Mohammad Mousavi-Khattat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
9
|
Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. J Colloid Interface Sci 2022; 622:612-624. [DOI: 10.1016/j.jcis.2022.04.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
10
|
Abdelhamid HN, Mathew AP. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int J Mol Sci 2022; 23:5405. [PMID: 35628218 PMCID: PMC9140895 DOI: 10.3390/ijms23105405] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
There are various biomaterials, but none fulfills all requirements. Cellulose biopolymers have advanced biomedicine to satisfy high market demand and circumvent many ecological concerns. This review aims to present an overview of cellulose knowledge and technical biomedical applications such as antibacterial agents, antifouling, wound healing, drug delivery, tissue engineering, and bone regeneration. It includes an extensive bibliography of recent research findings from fundamental and applied investigations. Cellulose-based materials are tailorable to obtain suitable chemical, mechanical, and physical properties required for biomedical applications. The chemical structure of cellulose allows modifications and simple conjugation with several materials, including nanoparticles, without tedious efforts. They render the applications cheap, biocompatible, biodegradable, and easy to shape and process.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden;
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Aji P. Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden;
| |
Collapse
|
11
|
Squinca P, Bilatto S, Badino AC, Farinas CS. The use of enzymes to isolate cellulose nanomaterials: A systematic map review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Ghafoor B, Najabat Ali M. Synthesis and in vitro evaluation of natural drug loaded polymeric films for cardiovascular applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221085735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug eluting stents (DES) can efficiently reduce the atherosclerosis and restenosis issues of coronary artery as compared to bare metal stents due to the presence of pharmaceutically active agent on their surface. Nevertheless, the arising safety concerns of DES such as delayed healing and late in stent restenosis and thrombus, has stirred the research efforts to improve the outcomes of the DES. In this connection, attention is being shifted from the use of synthetic drug to natural drug for DES. In the present work, natural compound loaded polymeric films were synthesized and their antioxidant and anticoagulation capabilities were assessed through in vitro testing. The potential of the drug loaded polymeric films to curb the production of free radicals was evaluated by carrying out antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The in vitro platelet adhesion was investigated through static platelet adhesion test while effect of synthesized films on intrinsic coagulation pathway was investigated through activated partially thromboplastin time (APTT). Moreover, to further evaluate the blood compatibility of the developed drug loaded films, in vitro hemolytic and anti-thrombolytic assays were carried out. The obtained results indicated that, incorporating herbal compounds such as ginger, magnolol and curcumin, in polymeric matrix (PVA) has significantly improved the blood compatibility of the polymeric films. Hence, it can be concluded that the synthesized drug loaded polymeric films have the potential capability to be used as a potential coating material for coating biomedical implants with good anticoagulation and antioxidant property to cater the cardiovascular issues such as atherosclerosis, restenosis and thrombus formation.
Collapse
Affiliation(s)
- Bakhtawar Ghafoor
- Biomedical Engineering & Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Biomedical Engineering & Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
13
|
Xu S, Lu T, Yang L, Luo S, Wang Z, Ye C. In situ cell electrospun using a portable handheld electrospinning apparatus for the repair of wound healing in rats. Int Wound J 2022; 19:1693-1704. [PMID: 35142063 PMCID: PMC9615271 DOI: 10.1111/iwj.13769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Slow or non‐healing wounds caused by full‐thickness skin wounds of various origins have become a difficult challenge in clinical wound treatment. In particular, large full‐thickness skin wounds often lead to serious chronic skin wounds that do not heal. Electrospinning technology and stem cell treatment for wound repair have attracted much attention due to its unique advantages. In the current study, we electrospun polyvinyl alcohol (PVA) and bone marrow–derived stem cells (BMSCs) by a handheld electrospinning device, the distribution and interaction of cells and fibres were determined by light and electron microscopy and the cell viability and proliferation were determined by live/dead cell staining. The tissues were analysed by histology with Haematoxylin and Eosin (H&E) and Masson staining and immunohistochemical staining. We found that the fibres were distributed uniformly and BMSCs were distributed between the fibres. Cytotoxicity and cell proliferation tests proved its good biocompatibility. Histological staining shows it can accelerate wound healing and appendages regeneration by promoting granulation tissue repair. The instant PVA/stem cell fibres prepared by a handheld electrospinning device strongly promote the repair of full‐thickness skin wounds in rats. The proposed electrospinning technology is expected to have great potential in household, outdoor and battlefield first aid.
Collapse
Affiliation(s)
- Shunen Xu
- Medical College of Soochow University, Suzhou, China.,Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Lu
- Department of Orthopaedics, The First People's Hospital of Guiyang, Guiyang, China
| | - Long Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Siwei Luo
- Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Guizhou Medical University, Guiyang, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| |
Collapse
|