1
|
Panakkal V, Havlicek D, Pavlova E, Jirakova K, Jirak D, Sedlacek O. Single-Step Synthesis of Highly Sensitive 19F MRI Tracers by Gradient Copolymerization-Induced Self-Assembly. Biomacromolecules 2024; 25:7685-7694. [PMID: 39558644 PMCID: PMC11632659 DOI: 10.1021/acs.biomac.4c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Amphiphilic gradient copolymers are promising alternatives to block copolymers for self-assembled nanomaterials due to their straightforward synthesis via statistical copolymerization of monomers with different reactivities and hydrophilicity. By carefully selecting monomers, nanoparticles can be synthesized in a single step through gradient copolymerization-induced self-assembly (gPISA). We synthesized highly sensitive 19F MRI nanotracers via aqueous dispersion gPISA of hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) with core-forming N,N-(2,2,2-trifluoroethyl)acrylamide (TFEAM). The PPEGMA-grad-PTFEAM nanoparticles were optimized to achieve spherical morphology and exceptional 19F MRI performance. Noncytotoxicity was confirmed in Panc-1 cells. In vitro 19F MR relaxometry and imaging demonstrated their diagnostic imaging potential. Notably, these gradient copolymer nanotracers outperformed block copolymer analogs in 19F MRI performance due to their gradient architecture, enhancing 19F relaxivity. The synthetic versatility and superior 19F MRI performance of gradient copolymers highlight their potential in advanced diagnostic imaging applications.
Collapse
Affiliation(s)
- Vyshakh
M. Panakkal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40 Prague 2, Czech Republic
| | - Dominik Havlicek
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
- Institute
of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121
08 Prague, Czech
Republic
| | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, v.v.i., Academy
of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Klara Jirakova
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
- Third
Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| | - Daniel Jirak
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
- Institute
of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121
08 Prague, Czech
Republic
- Faculty of
Health Studies, Technical University of
Liberec, Studentská
1402/2, 46117 Liberec, Czech Republic
| | - Ondrej Sedlacek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40 Prague 2, Czech Republic
| |
Collapse
|
2
|
Tunca Arın TA, Sedlacek O. Stimuli-Responsive Polymers for Advanced 19F Magnetic Resonance Imaging: From Chemical Design to Biomedical Applications. Biomacromolecules 2024; 25:5630-5649. [PMID: 39151065 PMCID: PMC11388145 DOI: 10.1021/acs.biomac.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
Fluorine magnetic resonance imaging (19F MRI) is a rapidly evolving research area with a high potential to advance the field of clinical diagnostics. In this review, we provide an overview of the recent progress in the field of fluorinated stimuli-responsive polymers applied as 19F MRI tracers. These polymers respond to internal or external stimuli (e.g., temperature, pH, oxidative stress, and specific molecules) by altering their physicochemical properties, such as self-assembly, drug release, and polymer degradation. Incorporating noninvasive 19F labels enables us to track the biodistribution of such polymers. Furthermore, by triggering polymer transformation, we can induce changes in 19F MRI signals, including attenuation, amplification, and chemical shift changes, to monitor alterations in the environment of the tracer. Ultimately, this review highlights the emerging potential of stimuli-responsive fluoropolymer 19F MRI tracers in the current context of polymer diagnostics research.
Collapse
Affiliation(s)
- Tuba Ayça Tunca Arın
- Department of Physical and
Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and
Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| |
Collapse
|
3
|
Jirát-Ziółkowska N, Vít M, Groborz O, Kolouchová K, Červený D, Sedláček O, Jirák D. Long-term in vivo dissolution of thermo- and pH-responsive, 19F magnetic resonance-traceable and injectable polymer implants. NANOSCALE ADVANCES 2024; 6:3041-3051. [PMID: 38868824 PMCID: PMC11166117 DOI: 10.1039/d4na00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/14/2024]
Abstract
19F magnetic resonance (19F MR) tracers stand out for their wide range of applications in experimental and clinical medicine, as they can be precisely located in living tissues with negligible fluorine background. This contribution demonstrates the long-term dissolution of multiresponsive fluorinated implants designed for prolonged release. Implants were detected for 14 (intramuscular injection) and 20 (subcutaneous injection) months by 19F MR at 4.7 T, showing favorable MR relaxation times, biochemical stability, biological compatibility and slow, long-term dissolution. Thus, polymeric implants may become a platform for long-term local theranostics.
Collapse
Affiliation(s)
- Natalia Jirát-Ziółkowska
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Katerinska 1660/32 Prague 121 08 Czech Republic
| | - Martin Vít
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
| | - Ondřej Groborz
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Katerinska 1660/32 Prague 121 08 Czech Republic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovsky square 2 162 06 Prague Czech Republic
| | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovsky square 2 162 06 Prague Czech Republic
| | - David Červený
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Faculty of Health Studies, Technical University of Liberec Studentska 1402/2 Liberec 461 17 Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Hlavova 8 Prague 128 00 Czech Republic
| | - Daniel Jirák
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Faculty of Health Studies, Technical University of Liberec Studentska 1402/2 Liberec 461 17 Czech Republic
| |
Collapse
|
4
|
Mo Y, Huang C, Liu C, Duan Z, Liu J, Wu D. Recent Research Progress of 19 F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol Rapid Commun 2023; 44:e2200744. [PMID: 36512446 DOI: 10.1002/marc.202200744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Visualization of biomolecules, cells, and tissues, as well as metabolic processes in vivo is significant for studying the associated biological activities. Fluorine magnetic resonance imaging (19 F MRI) holds potential among various imaging technologies thanks to its negligible background signal and deep tissue penetration in vivo. To achieve detection on the targets with high resolution and accuracy, requirements of high-performance 19 F MRI probes are demanding. An ideal 19 F MRI probe is thought to have, first, fluorine tags with magnetically equivalent 19 F nuclei, second, high fluorine content, third, adequate fluorine nuclei mobility, as well as excellent water solubility or dispersity, but not limited to. This review summarizes the research progresses of 19 F MRI probes and mainly discusses the impacts of structures on in vitro and in vivo imaging performances. Additionally, the applications of 19 F MRI probes in ions sensing, molecular structures analysis, cells tracking, and in vivo diagnosis of disease lesions are also covered in this article. From authors' perspectives, this review is able to provide inspirations for relevant researchers on designing and synthesizing advanced 19 F MRI probes.
Collapse
Affiliation(s)
- Yongyi Mo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Juan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
5
|
Chang J, Zhou H, Li C, Sun J, Wang Q, Li Y, Zhao W. Preparation of PFPE-Based Polymeric Nanoparticles via Polymerization-Induced Self-Assembly as Contrast Agents for 19F MRI. Biomacromolecules 2023. [PMID: 37235210 DOI: 10.1021/acs.biomac.3c00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) probes have received considerable research interest as imaging contrast agents (CAs), but they remain neglected and underutilized due to the limited fluorine content or poor performance of fluorinated tracers. Here, we present polymeric nanoparticles (NPs) as 19F MRI CAs with a simple synthesis method and promising imaging performance. First, hydrophilic random copolymers were synthesized from oligo(ethylene glycol) methyl ether acrylate and perfluoropolyether methacrylate by reversible addition-fragmentation chain transfer (RAFT) polymerization. The optimal fluorine content, polymer concentration, and cytotoxicity as 19F MRI CAs were investigated in detail. Then, the optimal copolymer was selected as the macromolecular chain transfer agent, and the chain extension was performed with 2-(perfluorooctyl ethyl methacrylate). Subsequently, the NPs with different morphologies, such as ellipsoidal, spherical nanoparticles and vesicles, were prepared in situ by the RAFT-mediated polymerization-induced self-assembly method. In addition, the 19F MRI signal and cytotoxicity studies further confirmed that these polymeric NPs are nontoxic and have great potential as promising 19F MRI CAs for biological applications.
Collapse
Affiliation(s)
- Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Jingjiang Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wei Zhao
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| |
Collapse
|
6
|
Panakkal V, Havlicek D, Pavlova E, Filipová M, Bener S, Jirak D, Sedlacek O. Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)acrylamide in Water. Biomacromolecules 2022; 23:4814-4824. [PMID: 36251480 PMCID: PMC10797588 DOI: 10.1021/acs.biomac.2c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Indexed: 11/29/2022]
Abstract
19F magnetic resonance imaging (MRI) using fluoropolymer tracers has recently emerged as a promising, non-invasive diagnostic tool in modern medicine. However, despite its potential, 19F MRI remains overlooked and underused due to the limited availability or unfavorable properties of fluorinated tracers. Herein, we report a straightforward synthetic route to highly fluorinated 19F MRI nanotracers via aqueous dispersion polymerization-induced self-assembly of a water-soluble fluorinated monomer. A polyethylene glycol-based macromolecular chain-transfer agent was extended by RAFT-mediated N-(2,2,2-trifluoroethyl)acrylamide (TFEAM) polymerization in water, providing fluorine-rich self-assembled nanoparticles in a single step. The resulting nanoparticles had different morphologies and sizes ranging from 60 to 220 nm. After optimizing their structure to maximize the magnetic relaxation of the fluorinated core, we obtained a strong 19F NMR/MRI signal in an aqueous environment. Their non-toxicity was confirmed on primary human dermal fibroblasts. Moreover, we visualized the nanoparticles by 19F MRI, both in vitro (in aqueous phantoms) and in vivo (after subcutaneous injection in mice), thus confirming their biomedical potential.
Collapse
Affiliation(s)
- Vyshakh
M. Panakkal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| | - Dominik Havlicek
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, AS CR, Prague 6 162 06, Czech
Republic
| | - Marcela Filipová
- Institute
of Macromolecular Chemistry, AS CR, Prague 6 162 06, Czech
Republic
| | - Semira Bener
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| | - Daniel Jirak
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Ondrej Sedlacek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| |
Collapse
|
7
|
Jeong J, Ryu J, Jeong Y, Kroneková Z, Kronek J, Sohn D. Aggregation behaviors of gradient and diblock copoly(2-oxazoline) monolayers at the air-water interface. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Li Y, Cui J, Li C, Zhou H, Chang J, Aras O, An F. 19 F MRI Nanotheranostics for Cancer Management: Progress and Prospects. ChemMedChem 2022; 17:e202100701. [PMID: 34951121 PMCID: PMC9432482 DOI: 10.1002/cmdc.202100701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) is a promising imaging technique for cancer diagnosis because of its excellent soft tissue resolution and deep tissue penetration, as well as the inherent high natural abundance, almost no endogenous interference, quantitative analysis, and wide chemical shift range of the 19 F nucleus. In recent years, scientists have synthesized various 19 F MRI contrast agents. By further integrating a wide variety of nanomaterials and cutting-edge construction strategies, magnetically equivalent 19 F atoms are super-loaded and maintain satisfactory relaxation efficiency to obtain high-intensity 19 F MRI signals. In this review, the nuclear magnetic resonance principle underlying 19 F MRI is first described. Then, the construction and performance of various fluorinated contrast agents are summarized. Finally, challenges and future prospects regarding the clinical translation of 19 F MRI nanoprobes are considered. This review will provide strategic guidance and panoramic expectations for designing new cancer theranostic regimens and realizing their clinical translation.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Cui
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|