1
|
Meng X, Hao T, Zhang D, Zhao R, Liu H, Zhang P, Deng K. Polymerization-induced emission (PIE) of multifunctional polyamides synthesized by Ugi polymerization and targeted imaging of lysosomes. J Mater Chem B 2023; 11:2714-2726. [PMID: 36877240 DOI: 10.1039/d2tb02639b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In this paper, a series of polyamide derivatives (PAMs) containing morpholine groups were prepared by Ugi polymerization from dialdehyde, diacid, N-(2-aminoethyl)-morpholine and isonitrile compounds as novel multi-responsive fluorescent sensors. As non-conjugated light-emitting polymers, PAMs were endowed with unique polymerization-induced emission (PIE) performance at 450 nm by through-space conjugation (TSC) between heteroatoms and heterocycles. It was also found that PAMs exhibited reversible responses to the external temperature and pH values and became responsive fluorescent switches. In addition, PAMs can specifically recognize Fe3+ with a limit of detection (LOD) of 54 nM and the introduction of EDTA reversibly restores the fluorescence of the quenched PAMs-Fe3+ system. By virtue of thermosensitivity, PAMs are easily separated from the above system by changing the temperature above or below the lower critical solution temperature (LCST). It is worth noting that PIE-active PAMs with good biocompatibility can selectively accumulate in lysosomes due to the presence of morpholine groups, and its Pearson colocalization coefficient is as higher as 0.91. Furthermore, a PIE-active PAM was successfully used to track exogenous Fe3+ in lysosomes. In conclusion, these multi-functional PIE-active PAMs have higher potential applications in biomedical or environmental fields.
Collapse
Affiliation(s)
- Xue Meng
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Tingting Hao
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Da Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Ronghui Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
- Department of Clinical Pharmacy, Affiliated Hospital of Hebei University, Baoding, 071002, China
| | - Hongmei Liu
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Pengfei Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Kuilin Deng
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Poly(2-oxazoline)-derived star-shaped polymers as potential materials for biomedical applications: A review. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Wang X, Zhang Z, Hadjichristidis N. Poly(amino ester)s as an emerging synthetic biodegradable polymer platform: Recent developments and future trends. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Glycol-Chitosan-Based Technetium-99m-Loaded Multifunctional Nanomicelles: Synthesis, Evaluation, and In Vivo Biodistribution. NANOMATERIALS 2022; 12:nano12132198. [PMID: 35808034 PMCID: PMC9268087 DOI: 10.3390/nano12132198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
We hereby propose the use of stable, biocompatible, and uniformly sized polymeric micelles as high-radiotracer-payload carriers at region-of-interest with negligible background activity due to no or low offsite radiolysis. We modified glycol chitosan (GC) polymer with varying levels of palmitoylation (P) and quaternization (Q). Quaternary ammonium palmitoyl glycol chitosan (GCPQ) with a Q:P ratio of 9:35 (Q9P35GC) offers >99% biocompatibility at 10 mg mL−1. Q9P35GC micelles exhibit >99% 99mTechnetium (99mTc) radiolabeling via the stannous chloride reduction method without heat. The 99mTc-Q9P35GC micelles (65 ± 3 nm) exhibit >98% 6 h serum stability at 37 °C and 7 day of radiochemical stability at 25 °C. HepG2 cells show a higher uptake of FITC-Q9P35GC than Q13P15GC and Q20P15GC. The in vivo 24 h organ cumulated activity (MBq h) order follows: liver (234.4) > kidneys (60.95) > GIT (0.73) > spleen (88.84). The liver to organ ratio remains higher than 2.4, rendering a better contrast in the liver. The radiotracer uptake decreases significantly in fibrotic vs. normal liver, whereas a blocking study with excess Q9P35GC significantly decreases the radiotracer uptake in a healthy vs. fibrotic liver. FITC-Q9P35GC shows in vivo hepato-specific uptake. Radiotracer liver uptake profile follows reversible binding kinetics with data fitting to two-tissue compartmental (2T), and graphical Ichise multilinear analysis (MA2) with lower AIC and higher R2 values, respectively. The study concludes that 99mTc-Q9P35GC can be a robust radiotracer for noninvasive hepatocyte function assessment and diagnosis of liver fibrosis. Furthermore, its multifunctional properties enable it to be a promising platform for nanotheranostic applications.
Collapse
|