1
|
Blair J, Rathee G, Puertas-Segura A, Pérez LM, Tzanov T. Advanced water treatment with antimicrobial silver-lignin nanoparticles sonochemically-grafted on cork granulates in activated carbon packed-bed columns. ENVIRONMENTAL RESEARCH 2025; 279:121783. [PMID: 40340009 DOI: 10.1016/j.envres.2025.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/27/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Cork biomass (C) was grafted with antimicrobial silver phenolated-lignin nanoparticles (AgPLN) using a fast and simple sono-enzymatical process. The AgPLN-functionalised cork (C-AgPLN) exhibited potent antibacterial and antibiofilm properties against the common waterborne pathogens, Escherichia coli and Staphylococcus aureus. Its effects on bacterial cells included alterations in cell morphology and structure, as revealed by electron microscopy (SEM and TEM) and fluorescence microscopy (LIVE/DEAD staining). These effects also included increased oxidative stress (80 % and 31 % in E. coli and S. aureus, respectively), >99 % reduction in viability, a 60 % reduction in E. coli biofilm, and a 44 % reduction in S. aureus biofilm, as quantified by spectroscopic methods (ROS measurement, XTT metabolic activity test, and crystal violet staining). C-AgPLN also demonstrates anti-quorum sensing properties against both Gram-negative and Gram-positive bacteria, crucial for disrupting bacterial communication, thereby preventing biofilm formation. Further, C-AgPLN was combined with activated carbon (AC) at different proportions (1 %, 2 %, and 4 % w/w) in lab-scale packed-bed columns for the disinfection of water contaminated with E. coli or S. aureus. Columns containing 4 % w/w C-AgPLN demonstrated 100 % disinfection efficiency after 1 h of operation in recirculation mode (flow rate = 8.6 mL/min), and were reusable for up to 2 and 4 cycles without losing their disinfection capacity. Noteworthy, silver ion (Ag+) release was not detected in the effluent after 240 h columns operation (ICP-MS detection limit of <0.07 μg/L), confirming the environmental safety on the novel water-disinfection approach. Given that adsorption is a well-established method for advanced wastewater treatment, these results underscore the potential of nano-enabled AC-packed columns for safely and efficiently controlling the spread of water-associated pathogens.
Collapse
Affiliation(s)
- Jeniffer Blair
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Garima Rathee
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Antonio Puertas-Segura
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Leonardo Martín Pérez
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain.
| |
Collapse
|
2
|
Carneiro AAB, Patekar S, Goyal M, de Almeida S, Dayarathne NK, De Campos SB, Bally J, Hassanpour M, Zhang Z. Lignin-enabled silica hybrid nanoparticles from rice husk for improved biopesticide delivery and cotton bollworm control. Int J Biol Macromol 2025; 309:142589. [PMID: 40169049 DOI: 10.1016/j.ijbiomac.2025.142589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
This study investigates the production of lignin/silica hybrid nanoparticles (LSNPs) from rice husk, an abundant agricultural byproduct, for the delivery of soybean trypsin inhibitor (STI), a bioinsecticide. Lignin was extracted from rice husk under alkaline conditions and co-precipitated with silica to form LSNPs. Characterization revealed that lignin imparted hydrophobicity to the nanoparticles and increased their surface area, enhancing their potential for pesticide delivery. The hybrid nanoparticles were evaluated for their ability to resist washout, control STI release, and provide effective biocontrol against cotton bollworm larvae - one of the most damaging pests in cotton crops. The results indicates that lignin played a critical role in imparting hydrophobicity to the nanoparticles, significantly enhancing their adhesion to hydrophobic plants such as cotton. The hybrid nano-formulations exhibited superior foliar adherence, washout resistance, and pH-responsive release (28.1 % at pH 9). STI delivered with LSNP achieved 99.1 % insect weight reduction, and complete (100 %) mortality rate compared to 75.8 % weight reduction and 66.7 % mortality rate when delivered by pure silica. This work highlights the synergistic potential of combining lignin and silica from the same bio-based source in enhancing both foliar adhesion and bioactivity of biopesticides, offering a promising alternative for sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Andreia Abadia Borges Carneiro
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia
| | - Soumitra Patekar
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia
| | - Mansi Goyal
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia
| | - Samilla de Almeida
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia; Department of Engineering, Physics and Mathematics, Institute of Chemistry, 55 Av. Prof. Francisco Degni, Araraquara, SP 14800-900, Brazil
| | - Nethmi Kulanika Dayarathne
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia
| | - Samanta Bolzan De Campos
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia
| | - Julia Bally
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia
| | - Morteza Hassanpour
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia.
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
3
|
Wu Y, Chen X, Ni S, Zhang Y, Fu Y, Qin M. Extracting light-colored lignin with high phenolic-OH from poplar by ultrasonic-assisted formic acid/phenol treatment to prepare transparent lignin/cellulose composite film. Int J Biol Macromol 2025; 309:142840. [PMID: 40222512 DOI: 10.1016/j.ijbiomac.2025.142840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Lignin that has inherent antioxidant and UV absorption capacity can be incorporated with cellulose to prepare functional composite film. However, the dark color and low film-forming ability of industrial lignin limit its application in high-quality transparent films. In this work, ultrasound-assisted formic acid/phenol treatment (uFAPT) was used to extract phenolated and low-condensed lignin from poplar in view of the lignin priority principle. The structural characteristics of the isolated lignin were comprehensively clarified and the light-colored lignin with high phenolic hydroxyl was used to prepare lignin/cellulose composite film. The results showed that in-situ phenolation of lignin inhibited the lignin recondensation and the formation of Hibbert' ketone structure, resulting in a high yield of isolated lignin. The phenolated lignin had a high lightness, high phenolic hydroxyl content, low molecular weight and polydispersity, conferring the lignin/cellulose film a good transparency even at a high lignin loading. The incorporation of phenolated lignin not only significantly boosted the film's antioxidant capacity, UV shielding capability, hydrophobicity and water vapor barrier performance but also maintenance its tensile strength. Given above impressive properties, the lignin/cellulose film holds vast potential for applications in the realm of color restriction and food packaging, etc.
Collapse
Affiliation(s)
- Yongzhen Wu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Green Papermaking and Resource Recycling, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoqian Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Green Papermaking and Resource Recycling, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuzhen Ni
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Green Papermaking and Resource Recycling, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yongchao Zhang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Green Papermaking and Resource Recycling, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingjuan Fu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Green Papermaking and Resource Recycling, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Menghua Qin
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| |
Collapse
|
4
|
Wang Z, Li C, Liu X, Jia W, Huang L, Wu L, Shi H. Formation of Homogeneous Lignin Nanoparticles from Industrial Kraft Lignin via Fractionation Combined with Antisolvent Precipitation. Biomacromolecules 2025; 26:1838-1849. [PMID: 39951724 DOI: 10.1021/acs.biomac.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Processing lignin into nanoparticles (LNPs) offers a promising utilization strategy; however, its structural and molecular weight heterogeneity poses challenges in the formation of uniform LNPs. In this study, industrial kraft lignin was fractionated in stepwise molecular weight (Mw) from low to high and from which LNPs were fabricated via antisolvent precipitation. The results showed that lignin with high Mw benefits the formation of uniform and smaller-sized LNPs. Particularly, the lignin fraction with Mw of 2016 g·mol-1 fails to form LNPs. The main mechanism is that the higher content of hydrophilic groups (mainly phenolic hydroxyl groups) on the lower molecular weight lignin hinders the formation of LNPs. This hypothesis is supported by the successful formation of homogeneous LNPs after low molecular weight lignin acetylation. Fractionation effectively reduces lignin heterogeneity and promotes the formation of LNPs, which would favor the chemical reactivity and properties, enhancing the utilization of industrial lignin.
Collapse
Affiliation(s)
- Zhongshan Wang
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Changgeng Li
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiaodi Liu
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Wenchao Jia
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Lingzhi Huang
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Lu Wu
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Haiqiang Shi
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| |
Collapse
|
5
|
Haider MK, Ullah A, Gopiraman M, Kim IS. A review on bioactivity, plant safety, and metal-reducing potential of lignin, its micro/nanostructures, and composites. Int J Biol Macromol 2025; 294:139366. [PMID: 39743055 DOI: 10.1016/j.ijbiomac.2024.139366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Modern science focuses on sustainability-oriented innovation. Structurally sophisticated lignin is a sustainable alternative to non-renewable resources. Over the last several years, a tremendous scientific effort has been made to innovate lignin-based sustainable materials for numerous advanced applications. The lignin's phenolic, methoxyl and aliphatic hydroxyl functional groups are biologically and chemically active, making it conducive to developing state-of-the-art biomedicine, food packaging, crop protection, and catalyst materials. The biocidal effect of lignin rests on the phenolic compounds, specifically the double bond in α, β positions of the side chain, and a methyl group in the γ position. Also, depending on the biomass source and the pulping method, lignins possess different biocidal and antioxidant properties. The abundant hydroxyl groups in lignin are metal reductants and possess capping ability for the nanoparticles (NPs). This review focused on lignin's bioactivity mechanism, including antimicrobial efficacy and antioxidant properties. Lignin-based micro/nanocomposites and their application on food packaging, plant protection, and growth will also be explored. We will also review the application of lignin as a reducing and capping agent for the synthesis of metal NPs.
Collapse
Affiliation(s)
- Md Kaiser Haider
- Nano Fusion Technology Research Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Azeem Ullah
- Nano Fusion Technology Research Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Mayakrishnan Gopiraman
- Nano Fusion Technology Research Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
6
|
Jin Z, Gong H, Chen B, Jiang Y, Su Y, Zhou J, Wang H, Li Y. Novel functional hydrogels based on lignin‑silver nanoparticles with adhesion, antimicrobial, antioxidant and anti-freezing properties for wound dressings and pressure strain sensors. Int J Biol Macromol 2025; 291:138853. [PMID: 39694379 DOI: 10.1016/j.ijbiomac.2024.138853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/27/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
As wound dressings and wearable electronics advance, it is critical to develop an efficacious strategy for integrating a variety of powerful functions into hydrogels. In this work, sodium lignosulfonate‑silver nanoparticles and the functional [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide structure (SBMA) are introduced into the multifunctional lignin-based hydrogel system. The sodium lignosulfonate‑silver nanoparticles, by catalyzing multiple redox reactions, facilitate the swift curing of hydrogels at room temperature. This process is advantageous for the structural refinement of hydrogel polymer segments and the integration of multiple functionalities. The synergistic effect of functional structure and nanoparticles bestows the hydrogel with superior adhesion, mechanical properties, antimicrobial properties and antioxidant properties. The introduction of a functional structure not only deferments the release of sodium lignosulfonate‑silver nanoparticles, but also imparts satisfactory conductivity and anti-freezing properties to the hydrogels. In applications related to wound dressings and pressure strain sensors, hydrogels demonstrate excellent potential. They effectively facilitate wound healing and enable the monitoring of limb movement. This work introduces a simple and effective approach to prepare lignin-based functional hydrogels, exhibiting significant potential for wound dressings and pressure strain sensors applications.
Collapse
Affiliation(s)
- Zhenxing Jin
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Hui Gong
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Bo Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yuewei Jiang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yingying Su
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Huihui Wang
- School of Mechanical Engineering & Automation, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| |
Collapse
|
7
|
Rawat K, Kaur R, Pujari AK, Kirar S, Bhaumik J. Lignin-Derived Gold-Titanium Dioxide Nanophotocomposites as Potent Photoactivatable Probes for Microbial Inactivation. ACS APPLIED BIO MATERIALS 2024; 7:7666-7674. [PMID: 39503607 DOI: 10.1021/acsabm.4c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The overuse of antibiotics has accelerated antibiotic resistance, and it is a significant global threat to public health. To combat the rising threat of drug-resistant microbes, antimicrobial photodynamic therapy (APDT) has emerged as a promising alternative therapeutic strategy. This study focuses on the synthesis of eco-friendly lignin-derived gold-titanium dioxide nanophotocomposites (L@Au-TiO2 NCs). Lignin was utilized as a sustainable precursor for the synthesis of L@Au-TiO2 NCs. The gold and TiO2 nanoparticles possess inherent photodynamic properties, and thus the developed L@Au-TiO2 NCs exhibit enhanced antimicrobial efficacy due to the synergistic combination of their attributes. The antimicrobial potential of the L@Au-TiO2 NCs was evaluated against various microbial strains (Escherichia coli, Bacillus megaterium, and Candida tropicalis) under dark and green light conditions. The outcome of this study highlights the promising potential of L@Au-TiO2 NCs for photodynamic antimicrobial applications. The L@Au-TiO2 nanophotocomposites could be explored in the fields of medicine and nanotechnology to introduce innovative ideas into the biomedical field.
Collapse
Affiliation(s)
- Kshitij Rawat
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Sector-81 (Knowledge City), S.A.S Nagar, Mohali, Punjab 140306, India
| | - Ravneet Kaur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Anil Kumar Pujari
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector-81 (Knowledge City), S.A.S Nagar, Mohali, Punjab 140306, India
| | - Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
8
|
Wang T, Yu X, Wang M, Sun J, Wu M, Zhang R, Niu N, Chen L, Ding L. A high-efficiency strategy for fruit preservation using green, natural raw materials. Int J Biol Macromol 2024; 280:135903. [PMID: 39313059 DOI: 10.1016/j.ijbiomac.2024.135903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Straw is an abundant renewable biomass resource material. Lignin contained in straw is a unique natural aromatic compound in nature. At present, it is urgent to find ways to realize the higher value of natural lignin resources. In this study, alkali lignin was separated from rice straw by hydrothermal method in NaOH solution, which was prepared lignin nanoparticles by a simple green anti-solvent method. The obtained lignin nanoparticles had excellent anti-tyrosinase activity (IC50 = 0.329 mg mL-1) and anti-oxidation performance (IC50 = 0.0451 mg mL-1). Meanwhile, through the analysis of tyrosinase inhibition kinetics, it is concluded that the tyrosinase inhibition by lignin nanoparticles belongs to mixed inhibition. The affinity of lignin nanoparticles to the free enzyme is greater than that of enzyme and substrate complex. In addition, lignin nanoparticles were added to chitosan solution for compounding, then the composite films for fruit preservation were prepared by casting method. The experimental results show that the composite membrane can effectively extend the shelf life of fruits, which is expected to achieve a broader application in the field of fruit preservation and food packaging.
Collapse
Affiliation(s)
- Tong Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xueling Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Mengyuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jianmin Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Renguo Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Lan Ding
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
9
|
Tran NT, Vo TV, Nguyen VP, Nguyen M, Le-Phuoc MT, Nguyen PLM, Nguyen TTT, Nguyen NT, Pham LH, Le THP, Nguyen TTT, Tran TTV, Nguyen DM, Hoang D. Advanced hybrid nanomaterials based on carboxymethyl-modified biopolymer: Green synthesis and application in sustainable antimicrobial products. Int J Biol Macromol 2024; 281:136633. [PMID: 39419150 DOI: 10.1016/j.ijbiomac.2024.136633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The utilization of agricultural by-products for the synthesis of hybrid nanomaterials represents an environmentally sustainable approach. This research aims to comprehensively investigate high-performance silver and copper nanoparticles hybrid materials based on carboxymethyl-modified cellulose / lignin derived from rice husks (CMC / CML-AgNPs and CMC / CML-CuONPs) and apply them for antimicrobial activities. CMC / CML was used to reduce Ag / Cu cations to the atomic level and then efficiently stabilize Ag / CuO nanoparticles, an eco-friendly method and sustainable development. The hybrid nanomaterials were successfully synthesized with spherical shapes and particle sizes ranging from 4 to 16 nm. The diffraction peaks at 38.46°, 46.57°, 64.93°, and 77.55° were ascribed to the face-centered cubic crystal lattice (111), (200), (220), and (311) of silver nanoparticles in the CMC / CML-AgNPs. The peaks were 32.26°, 46.06°, 52.16°, 61.71°, 63.80°, and 71.23° associating with the (110,20-2), (112), (11-3), (310), and (221) plane orientations of CuO nanoparticles. The proposed materials demonstrated highly efficient antimicrobial performances. Particularly, CMC-AgNPs and CML-CuONPs exhibited an inhibitory capability of up to 100 % against E. coli and S. aureus within 72 h. Simultaneously, the antifungal results showed that hybrid nanomaterials have a better ability to inhibit the A. niger than A. flavus fungus. When experimenting on peanut seeds, hybrid nanomaterials showed an inhibitory capability of up to 99.0 % against A. niger. IC50 values of the hybrid nanomaterials range from 0.872 mg/mL to 1.188 mg/mL, confirming that these materials are non-cytotoxic. These materials exhibit significant stability and enduring antimicrobial efficacy, making them ideal for sustainable development of various antibacterial and antifungal blocks for the near future.
Collapse
Affiliation(s)
- Nhat Thong Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Tuan Vu Vo
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Vinh Phu Nguyen
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue City 530000, Viet Nam
| | - MyTrinh Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Minh Tri Le-Phuoc
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Phi Long My Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam.
| | - Trang Thi Thu Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Ngoc Thuy Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Lam H Pham
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Thi Hong Phong Le
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi City 100000, Viet Nam
| | | | - Thi Thanh Van Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Dang Mao Nguyen
- Université de Lorraine, LERMAB, 186 rue de Lorraine, 54400 Cosnes-et-Romain, France
| | - DongQuy Hoang
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
10
|
Li D, Chen L, Qiu X. Rapid synthesis of ferulic acid-derived lignin coated silver nanoparticles with low cytotoxicity and high antibacterial activity. Int J Biol Macromol 2024; 277:134471. [PMID: 39102905 DOI: 10.1016/j.ijbiomac.2024.134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Antibiotic resistance and the rise of untreatable bacterial infections pose severe threats to human health. Silver nanoparticles (AgNPs) have emerged as a promising antibacterial solution due to their broad-spectrum effectiveness. However, their relatively high cytotoxicity has limited their widespread application. In this study, ferulic acid (FA) was used as a reducing agent, while silver oxide served as a silver precursor to rapidly prepare FA-derived lignin (FAL) coated AgNPs (AgNPs@FAL) with a size ranging from 34.8 to 77.1 nm. Density functional theory (DFT) calculations indicated that the coating of FAL endowed AgNPs@FAL with high stability, preventing the oxidation of AgNPs prior to antibacterial applications. Cell experiments further indicated that AgNPs@FAL exhibited lower cell toxicity (∼80 % viability of normal kidney cells cultured at 25 μg/mL AgNPs@FAL) compared to fully exposed commercially available citrate-modified AgNPs (AgNPs@CA). Antibacterial experiments revealed that the minimum inhibitory concentrations (MIC) of AgNPs@FAL against E. coli and S. aureus were 12.5 μg/mL and 25 μg/mL, respectively, surpassing the antibacterial effect of AgNPs@CA, as well as ampicillin and penicillin. Additionally, AgNPs@FAL was capable of disrupting E. coli and S. aureus biofilm formation. This novel AgNPs@FAL formulation presents a promising antibacterial solution, addressing limitations observed in conventional drugs.
Collapse
Affiliation(s)
- Dan Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
11
|
Wu X, Lian H, Xia C, Deng J, Li X, Zhang C. Mechanistic insights and applications of lignin-based ultraviolet shielding composites: A comprehensive review. Int J Biol Macromol 2024; 280:135477. [PMID: 39250986 DOI: 10.1016/j.ijbiomac.2024.135477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Lignin is a green aromatic polymer constructed from repeating phenylpropane units, incorporating features such as phenolic hydroxyl groups, carbonyl groups, and conjugated double bonds that serve as chromophores. These structural attributes enable it to absorb a wide spectrum of ultraviolet radiation within the 250-400 nm range. The resulting properties make lignin a material of considerable interest for its potential applications in polymers, packaging, architectural decoration, and beyond. By examining the structure of lignin, this research delves into the structural influence on its UV-shielding capabilities. Through a comparative analysis of lignin's use in various UV-shielding applications, the study explores the interplay between lignin's structure and its interactions with other materials. This investigation aims to elucidate the UV-shielding mechanism, thereby offering insights that could inform the development of high-value applications for lignin in UV-shielding composite materials.
Collapse
Affiliation(s)
- Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junqian Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changhang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Guo Q, He Y, Wu J, Ye H, You T, Xu F. Sodium-Alginate-Doped Lignin Nanoparticles for PBAT Composite Films to Dually Enhance Tensile Strength and Elongation Performance with Functionality. Polymers (Basel) 2024; 16:2312. [PMID: 39204532 PMCID: PMC11359584 DOI: 10.3390/polym16162312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
It is a formidable challenge in thermoplastic/lignin composites to simultaneously boost tensile strength and elongation performance due to the rigidity of lignin. To address this issue, sodium-alginate-doped lignin nanoparticles (SLNPs) were prepared by combining solvent exchange and a coprecipitation method and used as an eco-friendly filler for poly(butylene adipate-co-terephthalate) (PBAT). The results indicated that the 1% polyanionic sodium alginate solution contributed to the formation of SLNP in lignin/THF solution. SLNP with a mean hydrodynamic diameter of ~500 nm and a Zeta potential value of -19.2 mV was obtained, indicating more hydrophobic lignin nanoparticles and a smaller number of agglomerates in SLNP suspension. Only 0.5 wt% SLNP addition improved the yield strength, tensile strength, and elongation at break by 32.4%, 31.8%, and 35.1% of the PBAT/SLNP composite films, respectively. The reinforcing effect resulted from the rigid aromatic structure of SLNP, whereas the enhanced elongation was attributed to the nanostructural feature of SLNP, which may promote boundary cracking. Additionally, the PBAT/SLNP composite films displayed excellent ultraviolet (UV) resistance with a UV shielding percentage near 100% for UVB and more than 75% for UVA, respectively. The addition of SLNP hindered water vapor, enhancing the moisture barrier properties. Overall, this study provides an effective strategy to eliminate the decrement in elongation performance for PBAT/lignin composites and suggest they are good candidates to be extensively utilized.
Collapse
Affiliation(s)
- Qiyue Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yuan He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Jianyu Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Haichuan Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Q.G.); (Y.H.); (J.W.); (H.Y.); (F.X.)
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
13
|
Li P, Su W, Zheng Y, Wang M, Wang H, Zhou H, Wu W. Characterization and properties of phenolic resin doped modified lignin. Int J Biol Macromol 2024; 275:133430. [PMID: 38936567 DOI: 10.1016/j.ijbiomac.2024.133430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Phenolic resins occupy an important position in industrial applications, but phenol, one of the raw materials for synthesis, is a non-renewable resource. Lignin, as a natural polymer containing phenolic hydroxyl groups, alcohol hydroxyl groups and other reactive groups, can replace some of the phenol in the synthesis of phenolic resins, which can reduce the amount of phenol, thus reducing the cost of phenolic resins, while effectively promoting the high value-added use of renewable biomass resources. Due to its low reactivity, alkaline lignin is usually discharged as production waste, unaware that lignin macromolecules can be modified. In this paper, the phenolic monomers were obtained by acid-catalyzed depolymerization of DES (choline chloride/p-toluenesulfonic acid or choline chloride/lactic acid) from waste alkaline lignin, and the recovery rate of the DES solution during the catalytic treatment was more than 85 %, in which the main monomer was 2-methoxy-4-(1-propyl) phenol. The degradation of alkaline lignin is still favorable after five times of DES solvent recovery. The depolymerized lignin monomer replaced phenol by 50 wt% and then ternary co-polymerized with phenol and formaldehyde to form a biomass phenol-based phenolic resin, providing a green route for phenolic resin production. The cost of resin preparation was economically calculated, and it was found that the cost of resin after accumulating 4 cycles of DES treatment was only 51.1 % of that of pure phenolic resin. The density functional theory (DFT) was used to simulate the possible radical reactions in the intermediate process of phenolic resin reaction, to explore the microscopic mechanism and competition, to provide theoretical reference for further experimental realization of resin structure control and optimization, and to improve the theoretical system of resin synthesis.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wanting Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yiran Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; College of Art and Design, Nanjing Forestry University, Nanjing 210037, PR China
| | - Mingkang Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Huan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hui Zhou
- College of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
14
|
Li D, Chen L. Solvent-Induced Lignin Conformation Changes Affect Synthesis and Antibacterial Performance of Silver Nanoparticle. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:957. [PMID: 38869582 PMCID: PMC11173806 DOI: 10.3390/nano14110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
The emergence of antibiotic-resistant bacteria necessitates the development of novel, sustainable, and biocompatible antibacterial agents. This study addresses cytotoxicity and environmental concerns associated with traditional silver nanoparticles (AgNPs) by exploring lignin, a readily available and renewable biopolymer, as a platform for AgNPs. We present a novel one-pot synthesis method for lignin-based AgNPs (AgNPs@AL) nanocomposites, achieving rapid synthesis within 5 min. This method utilizes various organic solvents, demonstrating remarkable adaptability to a wide range of lignin-dissolving systems. Characterization reveals uniform AgNP size distribution and morphology influenced by the chosen solvent. This adaptability suggests the potential for incorporating lignin-loaded antibacterial drugs alongside AgNPs, enabling combined therapy in a single nanocomposite. Antibacterial assays demonstrate exceptional efficacy against both Gram-negative and Gram-positive bacteria, with gamma-valerolactone (GVL)-assisted synthesized AgNPs exhibiting the most potent effect. Mechanistic studies suggest a combination of factors contributes to the antibacterial activity, including direct membrane damage caused by AgNPs and sustained silver ion release, ultimately leading to bacterial cell death. This work presents a straightforward, adaptable, and rapid approach for synthesizing biocompatible AgNPs@AL nanocomposites with outstanding antibacterial activity. These findings offer a promising and sustainable alternative to traditional antibiotics, contributing to the fight against antibiotic resistance while minimizing environmental impact.
Collapse
Affiliation(s)
- Dan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China;
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Liheng Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China;
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Ecological Security, Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Wei Z, Cai W, Cai C, Fu Y. Tree transpiration-inspired cellulose aerogel with engineered cold-evaporated surface for promoting structural stability and minimizing energy loss. Carbohydr Polym 2024; 328:121729. [PMID: 38220347 DOI: 10.1016/j.carbpol.2023.121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Solar-driven evaporation technology could significantly relieve the fresh-water crisis in the world. However, several problems, such as poor structural stability, low photothermal conversion capacity, and single heat source of traditional evaporators limited the promotion of fresh-water production efficiency. Herein, inspired by tree transpiration, we report a hydrophilic three-dimensional (3D) cellulose-based evaporator similar to the root of a tree, which can pump the bottom water to the evaporation surface for vapor generation. The aldehyde-based cellulose nanocrystals/ethylene imine polymer (ACP) aerogel was developed through Schiff base reaction to enhance the chain entangle capacity of the cellulose nanocrystals (CNCs) aerogel in water. Coating the ACP aerogel with lignin-derived photothermal material created the double-layered solar-driven evaporator (ACP-7LM), achieving a remarkable surface temperature of 35.9 °C in water under 1 sun irradiation for 1 h. The ACP-7LM exhibited an impressive evaporation rate of 1.60 kg m-2 h-1, leveraging its structural stability and excellent photothermal conversion. Increasing the cold evaporation surface (adjusting exposure height from 0 cm to 4 cm) of ACP-7LM aerogel maintained a lower temperature compared to ambient temperature on the side surface during evaporation, which harvest heat energy from environment and minimize energy loss. This enhanced environmental heat absorption boosted the ACP-7LM's evaporation rate to 3.76 kg m-2 h-1, a 2.35-fold increase over the ACP-7LM (0 cm). This solar-driven evaporator offers an efficient, innovative approach to elevate evaporation rates and address the global water crisis by simultaneously enhancing heat absorption capacity and photothermal conversion efficiency.
Collapse
Affiliation(s)
- Zechang Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Wanquan Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chenyang Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yu Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
16
|
Cong SQ, Wang B, Wang H, Zheng QC, Yang QR, Yang RT, Li QL, Wang WS, Cui XJ, Luo FX. Fe 3O 4-lignin@Pd-NPs: A highly active, stable and broad-spectrum nanocomposite for water treatment. Int J Biol Macromol 2024; 256:128233. [PMID: 38040166 DOI: 10.1016/j.ijbiomac.2023.128233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
In this work, we report an environmentally friendly renewable nanocomposite magnetic lignin-based palladium nanoparticles (Fe3O4-lignin@Pd-NPs) for efficient wastewater treatment by decorating palladium nanoparticles without using any toxic reducing agents on the magnetic lignin abstracted from Poplar. The structure of composite Fe3O4-lignin@Pd-NPs was unambiguously confirmed by XRD, SEM, TEM, EDS, FTIR, and Zeta potential. After systematic evaluation of the use and efficiency of the composite to remove toxic organic dyes in wastewater, some promising results were observed as follows: Fe3O4-lignin@Pd-NPs exhibits highly active and efficient performance in the removal of toxic methylene blue (MB) (up to 99.8 %) wastewater in 2 min at different concentrations of MB and different pH values. Moreover, except for toxic MB, the other organic dyes including Rhodamine B (RhB), Rhodamine 6G (Rh6G), and Methyl Orange (MO) can also be removed efficiently by the composite. Finally, the easily recovered composite Fe3O4-lignin@Pd-NPs exhibits well stability and reusability, and catalytic efficiency is maintained well after ten cycles. In conclusion, the lignin-based magnetism Pd composite exhibits powerful potential practical application in industrial wastewater treatment.
Collapse
Affiliation(s)
- Si-Qi Cong
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bo Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Han Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qiu-Cui Zheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian-Ru Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruo-Tong Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wen-Shu Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiao-Jie Cui
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei-Xian Luo
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
17
|
Wu X, Lian H, Li X, Xiao J. The mechanism of self-assembly of lignin in deep eutectic solvent based on sulfamic acid and urea through molecular dynamics simulation. Int J Biol Macromol 2023; 253:126664. [PMID: 37660860 DOI: 10.1016/j.ijbiomac.2023.126664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Due to the diversity of industrial lignin sources and the complexity of its structure, its application as a high-value material is limited. Lignin nanoparticles (LNPs) have emerged as a hotspot for research due to their advantages of high specific surface area and high dispersion and the solvent transfer method is commonly used for the preparation of LNPs. In this paper, LNPs were prepared by solvent transfer method using DES based on sulfamic acid and urea (S/U DES) as solvent and water as anti-solvent. To explore the internal mechanism of the self-assembly of nanoparticles, a theoretical model of the solvent system and model lignin compound was constructed with the assistance of quantum chemistry and molecular dynamics theories. Through classical molecular dynamics (MD) simulations, the interaction energy, radius of gyration (ROG), solvent accessible surface area (SASS), radial and spatial distribution function (RDFs/SDFs), hydrogen bonding, and the morphology changes were analyzed to reveal the internal mechanism of self-assembly of model lignin compounds in S/U DES. This study is useful in revealing the mechanism of interaction between lignin and DES, as well as providing a benchmark for the green and efficient preparation of lignin nanoparticles.
Collapse
Affiliation(s)
- Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| | - Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Xiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Vo TV, Tran NT, Nguyen PLM, Nguyen NN, Nguyen NT, Nguyen TTT, Tran TTV, Nguyen VP, Thai HT, Hoang D. Sustainable Lignin-Based Nano Hybrid Biomaterials with High-Performance Antifungal Activity. ACS OMEGA 2023; 8:37540-37548. [PMID: 37841154 PMCID: PMC10568684 DOI: 10.1021/acsomega.3c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Aspergillus flavus (A. flavus) and Aspergillus niger (A. niger) mainly spread through airborne fungal spores. An effective control to impede the dissemination of the spores of Aspergillus in the air affecting the environment and food was carried out. This study focuses on the sustainable rice husk-extracted lignin, nanolignin, lignin/n-lignin capped silver nanoparticles used for fungal growth inhibition. These biomaterials inhibit the growth of fungi by altering the permeability of cell membranes and influencing intracellular biosynthesis. The antifungal indexes for A. flavus and A. niger on day 5 at a concentration of 2000 μg/100 μL are 50.8 and 43.6%, respectively. The results demonstrate that the hybrid biomaterials effectively prevent the growth or generation of fungal spores. The findings of this research hold significant implications for future investigations focused on mitigating the dissemination of Aspergillus during the cultivation of agricultural products or in the process of assuring agricultural product management, such as peanuts and onions.
Collapse
Affiliation(s)
- Tuan Vu Vo
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Nhat Thong Tran
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Phi Long My Nguyen
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Nguyen Ngan Nguyen
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Department
of Chemical Engineering, Pohang University
of Science and Technology, Pohang 37673, Korea
| | - Ngoc Thuy Nguyen
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Trang Thi Thu Nguyen
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Thi Thanh Van Tran
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Vinh Phu Nguyen
- Faculty
of Basic Sciences, University of Medicine
and Pharmacy, Hue University, Hue
City 530000, Vietnam
| | - Hoa Tran Thai
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - DongQuy Hoang
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| |
Collapse
|
19
|
Tran NT, Ha D, Pham LH, Vo TV, Nguyen NN, Tran CK, Nguyen DM, Nguyen TTT, Van Tran TT, Nguyen PLM, Hoang D. Ag/SiO 2 nanoparticles stabilization with lignin derived from rice husk for antifungal and antibacterial activities. Int J Biol Macromol 2023; 230:123124. [PMID: 36599386 DOI: 10.1016/j.ijbiomac.2022.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Antibacterial materials have been developed for a long time but bacteria adapt very quickly and become resistant to these materials. This study focuses on the synthesis of a hybrid material system from lignin and silver/silica nanoparticles (Lig@Ag/SiO2 NPs) which were used against bacteria including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and inhibited the growth of the fungal Aspergillus flavus (A. flavus). The results showed that the spherical diameter of Lig@Ag/SiO2 NPs has narrow Gaussian distribution with a range from 15 nm to 40 nm in diameter. Moreover, there was no growth of E. coli in samples containing Lig@Ag/SiO2 NPs during 72-h incubation while colonies of S. aureus were only observed at high concentrations (106 CFU/mL) although both species of bacteria were able to thrive even at low bacterial concentration when they were exposed to Ag/SiO2 or lignin. For fungal resistance results, Lig@Ag/SiO2 NPs not only reduced mycelial growth but also inhibited sporulation in A. flavus, leading to decreasing the spreading of spores into the environment. This result represents a highly effective fungal growth inhibition of Lig@Ag/SiO2 NPs compared to lignin or Ag/SiO2, which could not inhibit the growth of sporulation.
Collapse
Affiliation(s)
- Nhat Thong Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Dat Ha
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Lam H Pham
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Tuan Vu Vo
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Nguyen Ngan Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Cong Khanh Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Dang Mao Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Laboratoire Innovation Matériau Bois Habitat (LIMBHA), Ecole supérieure du bois, 7 Rue Christian Pauc, 44306 Nantes, France.
| | - Trang Thi Thu Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Thi Thanh Van Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Phi Long My Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam.
| | - DongQuy Hoang
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
20
|
Chen M, Li Y, Liu H, Zhang D, Shi QS, Zhong XQ, Guo Y, Xie XB. High value valorization of lignin as environmental benign antimicrobial. Mater Today Bio 2023; 18:100520. [PMID: 36590981 PMCID: PMC9800644 DOI: 10.1016/j.mtbio.2022.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin is a natural aromatic polymer of p-hydroxyphenylpropanoids with various biological activities. Noticeably, plants have made use of lignin as biocides to defend themselves from pathogen microbial invasions. Thus, the use of isolated lignin as environmentally benign antimicrobial is believed to be a promising high value approach for lignin valorization. On the other hand, as green and sustainable product of plant photosynthesis, lignin should be beneficial to reduce the carbon footprint of antimicrobial industry. There have been many reports that make use of lignin to prepare antimicrobials for different applications. However, lignin is highly heterogeneous polymers different in their monomers, linkages, molecular weight, and functional groups. The structure and property relationship, and the mechanism of action of lignin as antimicrobial remains ambiguous. To show light on these issues, we reviewed the publications on lignin chemistry, antimicrobial activity of lignin models and isolated lignin and associated mechanism of actions, approaches in synthesis of lignin with improved antimicrobial activity, and the applications of lignin as antimicrobial in different fields. Hopefully, this review will help and inspire researchers in the preparation of lignin antimicrobial for their applications.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Huiming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dandan Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xin-Qi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
21
|
He Y, Ye HC, You TT, Xu F. Sustainable and multifunctional cellulose-lignin films with excellent antibacterial and UV-shielding for active food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Morena AG, Tzanov T. Antibacterial lignin-based nanoparticles and their use in composite materials. NANOSCALE ADVANCES 2022; 4:4447-4469. [PMID: 36341306 PMCID: PMC9595106 DOI: 10.1039/d2na00423b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2023]
Abstract
Lignin, one of the most abundant biopolymers on earth, has been traditionally considered a low-value by-product of the pulp and paper industries. This renewable raw material, besides being a source of valuable molecules for the chemical industry, also has antioxidant, UV-absorbing, and antibacterial properties in its macromolecular form. Moreover, lignin in the form of nanoparticles (LigNPs) presents advantages over bulk lignin, such as higher reactivity due to its larger surface-to-volume ratio. In view of the rapid surge of antimicrobial resistance (AMR), caused by the overuse of antibiotics, continuous development of novel antibacterial agents is needed. The use of LigNPs as antibacterial agents is a suitable alternative to conventional antibiotics for topical application or chemical disinfectants for surfaces and packaging. Besides, their multiple and unspecific targets in the bacterial cell may prevent the emergence of AMR. This review summarizes the latest developments in antibacterial nano-formulated lignin, both in dispersion and embedded in materials. The following roles of lignin in the formulation of antibacterial NPs have been analyzed: (i) an antibacterial active in nanoformulations, (ii) a reducing and capping agent for antimicrobial metals, and (iii) a carrier of other antibacterial agents. Finally, the review covers the inclusion of LigNPs in films, fibers, hydrogels, and foams, for obtaining antibacterial lignin-based nanocomposites for a variety of applications, including food packaging, wound healing, and medical coatings.
Collapse
Affiliation(s)
- A Gala Morena
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya Rambla Sant Nebridi 22 Terrassa 08222 Spain +34 93 739 82 25 +34 93 739 85 70
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya Rambla Sant Nebridi 22 Terrassa 08222 Spain +34 93 739 82 25 +34 93 739 85 70
| |
Collapse
|
23
|
Xu Y, Xu Y, Chen H, Gao M, Yue X, Ni Y. Redispersion of dried plant nanocellulose: A review. Carbohydr Polym 2022; 294:119830. [PMID: 35868740 DOI: 10.1016/j.carbpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Nanocellulose has undergone substantial development as a high value-added cellulose product with broad applications. Dried products are advantageous to decrease transportation costs. However, dried nanocellulose has redispersion challenges when rewetting. In this work, drying techniques, factors affecting redispersibility, and strategies improving the nanocellulose redispersibility are comprehensively reviewed. Hydrogen bonds of nanocellulose are unavoidably developed during drying, leading to inferior redispersibility of dried nanocellulose, even hornification. Drying processes of nanocellulose are discussed first. Then, factors affecting redispersibility are discussed. Following that, strategies improving the nanocellulose redispersibility are analyzed and their advantages and disadvantages are highlighted. Surface charge modification and steric hindrance concept are two main pathways to overcome the redispersion challenge, which are mainly carried out by chemical modification, additive incorporation and non-cellulosic component preservation. Despite several advancements having been achieved, new approaches for enhancing the nanocellulose redispersibility are still required to promote the industrial-scale applications of nanocellulose in various domains.
Collapse
Affiliation(s)
- Yang Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Hao Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Minlan Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xiaopeng Yue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
24
|
Yan Y, He C, Zhang L, Dong H, Zhang X. Freeze-resistant, rapidly polymerizable, ionic conductive hydrogel induced by Deep Eutectic Solvent (DES) after lignocellulose pretreatment for flexible sensors. Int J Biol Macromol 2022; 224:143-155. [DOI: 10.1016/j.ijbiomac.2022.10.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/24/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
25
|
Antimicrobial Potential of Conjugated Lignin/Morin/Chitosan Combinations as a Function of System Complexity. Antibiotics (Basel) 2022; 11:antibiotics11050650. [PMID: 35625293 PMCID: PMC9137768 DOI: 10.3390/antibiotics11050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
As natural biopolymers, chitosan and lignin are characterized by their good biocompatibility, high biodegradability and satisfactory biosafety. The active polymers’ functional groups are responsible for the potential of these biomaterials for use as carrier matrices in the construction of polymer−drug conjugates with prospective applicability in the fields of medicine, food and agriculture—subjects that have attracted attention in recent years. Hence, the aim of this research was to place substantial emphasis on the antimicrobial potential of flavonoid−biopolymer complex systems by assessment of the probable synergetic, additive or antagonistic effects arising as a function of systemic complexity. The joint implementation of morin, chitosan and lignin in conjugated two- and three-component systems provoked species-dependent antimicrobial synergistic and/or potentiation effects against the activity of the tested bacterial strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and the clinical isolate Bacillus cereus. The double combinations of morin−chitosan and morin−lignin resulted in a 100% increase in their inhibitory activity against S. aureus as compared to the pure biocompounds. The inhibitory effects of the three-component system, in decreasing order, were: S. aureus (IZ = 15.7 mm) > P. aeruginosa (IZ = 15 mm) > B. cereus and E. coli (IZ = 14 mm). All tested morin-containing two- and three-component systems exhibited clear and significant potentiation effects, especially against S. aureus and B. cereus. The results obtained are a prerequisite for the potential use of the studied conjugated lignin−morin−chitosan combinations in the construction of novel drug-carrier formulations with improved bioactivities.
Collapse
|