1
|
Azekriti S, Mehenaoui K, Ehrenfeld F, Laffore A, Save M. Amphiphilic Poly(β-Myrcene- co-Acrylic Acid) Copolymers Synthesized by Nitroxide-Mediated Copolymerization as Stabilizers of Terpene-Based Waterborne Latex. Biomacromolecules 2025; 26:1111-1127. [PMID: 39879075 DOI: 10.1021/acs.biomac.4c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Terpene-based amphiphilic copolymers have been designed as biobased stabilizers for waterborne latex synthesized by miniemulsion or emulsion polymerization of 1,3-diene terpene monomers. The pH-responsive P(AA-co-My) amphiphilic copolymers were synthesized by nitroxide-mediated radical copolymerization of β-myrcene (My) and acrylic acid (AA) with reactivity ratios of rMy = 0.24 ± 0.06 and rAA = 0.05 ± 0.10. Polymerization was controlled for My-rich monomer feed ratios (fMy,0 > 0.3). Though AA NMP exhibited reasonable control, a low fraction of My (fMy,0 ≤ 0.3) produced branched structures with higher molar masses. P(AA0.80-co-My0.20) was the most efficient copolymer to stabilize monomodal PMy latexes (Dh ∼ 150-350 nm) synthesized by miniemulsion or emulsion polymerization. P(AA-co-My) copolymers with a higher hydrophobic PMy fraction (>35 mol %) were less efficient stabilizers. The more hydrophobic β-farnesene monomer was successfully polymerized by miniemulsion polymerization, whereas emulsion polymerization failed. The biobased waterborne latexes are pH-responsive with pH-triggered flocculation at low pH.
Collapse
Affiliation(s)
- Safae Azekriti
- Université de Pau et des Pays de l'Adour, CNRS, UMR 5254, IPREM, 2 av. P. Angot, Pau, Pau F-64053, France
| | - Karim Mehenaoui
- Université de Pau et des Pays de l'Adour, CNRS, UMR 5254, IPREM, 2 av. P. Angot, Pau, Pau F-64053, France
| | - Francis Ehrenfeld
- Université de Pau et des Pays de l'Adour, CNRS, UMR 5254, IPREM, 2 av. P. Angot, Pau, Pau F-64053, France
| | - Anthony Laffore
- Université de Pau et des Pays de l'Adour, CNRS, UMR 5254, IPREM, 2 av. P. Angot, Pau, Pau F-64053, France
| | - Maud Save
- Université de Pau et des Pays de l'Adour, CNRS, UMR 5254, IPREM, 2 av. P. Angot, Pau, Pau F-64053, France
| |
Collapse
|
2
|
Thapa D, Warne LN, Falasca M. Pharmacohistory of Cannabis Use-A New Possibility in Future Drug Development for Gastrointestinal Diseases. Int J Mol Sci 2023; 24:14677. [PMID: 37834122 PMCID: PMC10572150 DOI: 10.3390/ijms241914677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Humans have employed cannabis for multiple uses including medicine, recreation, food, and fibre. The various components such as roots, flowers, seeds, and leaves have been utilized to alleviate pain, inflammation, anxiety, and gastrointestinal disorders like nausea, vomiting, diarrhoea, and inflammatory bowel diseases (IBDs). It has occupied a significant space in ethnomedicines across cultures and religions. Despite multi-dimensional uses, the global prohibition of cannabis by the USA through the introduction of the Marijuana Tax Act in 1937 led to prejudice about the perceived risks of cannabis, overshadowing its medicinal potential. Nevertheless, the discovery of tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and the endocannabinoid system renewed scientific interest in understanding the role of cannabis in modulating different conditions, including gastrointestinal disorders. Preparations combining cannabidiol and THC have shown promise in mitigating gut symptoms through anti-inflammatory and motility-enhancing effects. This review revisits the ethnomedicinal use of cannabis in gastrointestinal diseases and emphasizes the need for further research to determine optimal dosages, formulations, and safety profiles of cannabis-based medicines. It also underscores the future potential of cannabinoid-based therapies by leveraging the role of the expanded endocannabinoid system, an endocannabinoidome, in the modulation of gastrointestinal ailments.
Collapse
Affiliation(s)
- Dinesh Thapa
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
| | - Leon N. Warne
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
- Little Green Pharma, West Perth, WA 6872, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
| |
Collapse
|
3
|
Xiao L, Hou Y, Xue Z, Bai L, Wang W, Chen H, Yang H, Yang L, Wei D. Soy Protein Isolate/Genipin-Based Nanoparticles for the Stabilization of Pickering Emulsion to Design Self-Healing Guar Gum-Based Hydrogels. Biomacromolecules 2023; 24:2087-2099. [PMID: 37079862 DOI: 10.1021/acs.biomac.2c01507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nowadays, stretchable self-healing hydrogels designed by biomass-based materials have gathered remarkable attention in numerous frontier fields such as wound healing, health monitoring issues, and electronic skin. In this study, soy protein isolate (SPI), a common plant protein, was cross-linked to nanoparticles (SPI NPs) by Genipin, (Gen) which was attracted from the native Geniposide. Oil-in-water (O/W) Pickering emulsion was formed by SPI NPs wrapping the linseed oil, and further implanted into poly(acrylic acid)/guar gum (PAA/GG)-based self-healing hydrogels by multiple reversible weak interactions. With the addition of Pickering emulsion, the hydrogels have achieved a remarkable self-healing ability (self-healing efficiency could reach 91.6% within 10 h) and mechanical properties (tensile strength of 0.89 MPa and strain of 853.2%). Therefore, these hydrogels with good reliable durability have outstanding application prospects in sustainable materials.
Collapse
Affiliation(s)
- Lixuan Xiao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Yaning Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Zhiyan Xue
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
4
|
Aguirre M, Ballard N, Gonzalez E, Hamzehlou S, Sardon H, Calderon M, Paulis M, Tomovska R, Dupin D, Bean RH, Long TE, Leiza JR, Asua JM. Polymer Colloids: Current Challenges, Emerging Applications, and New Developments. Macromolecules 2023; 56:2579-2607. [PMID: 37066026 PMCID: PMC10101531 DOI: 10.1021/acs.macromol.3c00108] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Indexed: 04/18/2023]
Abstract
Polymer colloids are complex materials that have the potential to be used in a vast array of applications. One of the main reasons for their continued growth in commercial use is the water-based emulsion polymerization process through which they are generally synthesized. This technique is not only highly efficient from an industrial point of view but also extremely versatile and permits the large-scale production of colloidal particles with controllable properties. In this perspective, we seek to highlight the central challenges in the synthesis and use of polymer colloids, with respect to both existing and emerging applications. We first address the challenges in the current production and application of polymer colloids, with a particular focus on the transition toward sustainable feedstocks and reduced environmental impact in their primary commercial applications. Later, we highlight the features that allow novel polymer colloids to be designed and applied in emerging application areas. Finally, we present recent approaches that have used the unique colloidal nature in unconventional processing techniques.
Collapse
Affiliation(s)
- Miren Aguirre
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Nicholas Ballard
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Edurne Gonzalez
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Shaghayegh Hamzehlou
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Haritz Sardon
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderon
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Maria Paulis
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Radmila Tomovska
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Damien Dupin
- CIDETEC,
Parque Científico y Tecnológico de Gipuzkoa, P° Miramón 196, 20014 Donostia-San Sebastian, Spain
| | - Ren H. Bean
- Biodesign
Institute, Center for Sustainable Macromolecular Materials and Manufacturing
(SM3), School of Molecular Sciences, Arizona
State University, Tempe, Arizona 85281, United States
| | - Timothy E. Long
- Biodesign
Institute, Center for Sustainable Macromolecular Materials and Manufacturing
(SM3), School of Molecular Sciences, Arizona
State University, Tempe, Arizona 85281, United States
| | - Jose R. Leiza
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - José M. Asua
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
5
|
Zhang Y, Placek TL, Jahan R, Alexandridis P, Tsianou M. Rhamnolipid Micellization and Adsorption Properties. Int J Mol Sci 2022; 23:ijms231911090. [PMID: 36232408 PMCID: PMC9570487 DOI: 10.3390/ijms231911090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are naturally occurring amphiphiles that are being actively pursued as alternatives to synthetic surfactants in cleaning, personal care, and cosmetic products. On the basis of their ability to mobilize and disperse hydrocarbons, biosurfactants are also involved in the bioremediation of oil spills. Rhamnolipids are low molecular weight glycolipid biosurfactants that consist of a mono- or di-rhamnose head group and a hydrocarbon fatty acid chain. We examine here the micellization of purified mono-rhamnolipids and di-rhamnolipids in aqueous solutions and their adsorption on model solid surfaces. Rhamnolipid micellization in water is endothermic; the CMC (critical micellization concentration) of di-rhamnolipid is lower than that of mono-rhamnolipid, and both CMCs decrease upon NaCl addition. Rhamnolipid adsorption on gold surface is mostly reversible and the adsorbed layer is rigid. A better understanding of biosurfactant self-assembly and adsorption properties is important for their utilization in consumer products and environmental applications.
Collapse
|