1
|
Dai Z, Jie J, Li J, Xie J, Men Y. Accelerated rapeseed germination and robust root growth facilitated by porous carbon within gellan gum hydrogel beads. Int J Biol Macromol 2025; 305:141337. [PMID: 39984073 DOI: 10.1016/j.ijbiomac.2025.141337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Soilless cultivation using hydrogels as growth media offers significant water and fertilizer savings, reduces soil-borne diseases, and mitigates the limitations of traditional soil and hydroponic systems. This approach presents a promising path toward sustainable green agriculture. However, conventional hydrogel-based substrates are often bulky, translucent, and limited in functionality, which restricts root respiration and physiological activities while failing to mimic the microporous structure and environmental regulation of soil. To address these limitations, we incorporated carbon black (CB) into spherically structured hydroxyethyl cellulose-gellan gum (HG-C) hydrogel beads and developed a stacked hydrogel bead system to optimize the root growth environment. The addition of CB improved the temperature regulation capability, enhanced pore connectivity, increased specific surface area, and improved water retention while preventing root exposure to light. In rapeseed germination and growth experiments, the HG-C hydrogel substrate significantly enhanced growth metrics, including shoot length, root length, root surface area, and root volume. Notably, under low-temperature conditions, the HG-C hydrogel substrate effectively promoted root development, compared to hydrogel beads without CB, root length increased by 648 %. Therefore, HG-C hydrogel beads represent a novel growth substrate with immense potential for enhancing seedling growth and providing a new strategy for crop resilience under adverse environmental conditions.
Collapse
Affiliation(s)
- Zhiyu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jingyuan Jie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Junfu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinchun Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongjun Men
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Liu Y, Duan F, Zhu Y, Wang X, Zong L, Wang A. Porous superabsorbent composites prepared from aqueous foam template and application evaluation. SOFT MATTER 2024; 20:1438-1446. [PMID: 38258320 DOI: 10.1039/d3sm01455j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Rapid water absorption is very important for the application of superabsorbent polymers under dry or semi-dry conditions, but there are currently few relevant studies. In this context, a novel porous superabsorbent of chitosan-grafted acrylic copolymer-2-acrylamido-2-methylpropanesulfonic acid/sapindus mukorossi pericarp/calcined oil shale semi-coke (CS-g-P(AA-co-AMPS)/SMP/COSSC) was prepared by a green and convenient foam template method, which was triggered by redox polymerization. The rich pore structure of the porous superabsorbent was conducive to accelerating the water absorption rate. It only took 15 min to reach a swelling capacity of 650 g g-1 in distilled water. Soil experiments show that even with the addition of 0.5 wt% porous superabsorbent, the soil water retention time can be extended to 7 days. Finally, it was applied to the growth of cabbage seeds and it was found that the growth was significantly improved. Based on these excellent properties, we expect to provide a valuable reference for the preparation of fast-absorbing materials through the green water-based foam template method, contributing to sustainable agriculture.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Fangzhi Duan
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Yongfeng Zhu
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Xicun Wang
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China
| | - Li Zong
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| |
Collapse
|
3
|
Zhang Z, Zhu J, Song X, Wen Y, Zhu C, Li J. Biomass-based single- and double-network hydrogels derived from cellulose microfiber and chitosan for potential application as plant growing substrate. Carbohydr Polym 2023; 319:121170. [PMID: 37567711 DOI: 10.1016/j.carbpol.2023.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023]
Abstract
A series of hydrogels were synthesized from renewable and low-cost micro-sized cellulose fiber. The single-network hydrogel was composed of cellulose fiber and a small amount of another polysaccharide, chitosan, which 'glued' individual cellulose fiber pieces together through Schiff-base bonding. The double-network hydrogel was constructed by adding a secondary network, the covalently crosslinked polyacrylamide, into the single-network hydrogel, which was synthesized by conducting Schiff-base reaction and free radical polymerization at the same time in a facile one-pot process. In both single- and double-network hydrogels, cellulose fiber constituted the dominant component. Both types of hydrogels exhibited good swelling properties. The double-network hydrogel showed much improved stability against soaking in water and higher salt tolerance. Germination experiment with choy sum seeds sowed on hydrogel surface showed that the seeds were able to germinate and further develop roots, shoots, and true leaves, demonstrating the potential of the biomass-derived hydrogels for soilless plant growing applications.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Chenxian Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
4
|
McKenzie T, Ayres N. Synthesis and Applications of Elastomeric Polymerized High Internal Phase Emulsions (PolyHIPEs). ACS OMEGA 2023; 8:20178-20195. [PMID: 37323392 PMCID: PMC10268022 DOI: 10.1021/acsomega.3c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Polymer foams (PFs) are among the most industrially produced polymeric materials, and they are found in applications including aerospace, packaging, textiles, and biomaterials. PFs are predominantly prepared using gas-blowing techniques, but PFs can also be prepared from templating techniques such as polymerized high internal phase emulsions (polyHIPEs). PolyHIPEs have many experimental design variables which control the physical, mechanical, and chemical properties of the resulting PFs. Both rigid and elastic polyHIPEs can be prepared, but while elastomeric polyHIPEs are less commonly reported than hard polyHIPEs, elastomeric polyHIPEs are instrumental in the realization of new materials in applications including flexible separation membranes, energy storage in soft robotics, and 3D-printed soft tissue engineering scaffolds. Furthermore, there are few limitations to the types of polymers and polymerization methods that have been used to prepare elastic polyHIPEs due to the wide range of polymerization conditions that are compatible with the polyHIPE method. In this review, an overview of the chemistry used to prepare elastic polyHIPEs from early reports to modern polymerization methods is provided, focusing on the applications that flexible polyHIPEs are used in. The review consists of four sections organized around polymer classes used in the preparation of polyHIPEs: (meth)acrylics and (meth)acrylamides, silicones, polyesters and polyurethanes, and naturally occurring polymers. Within each section, the common properties, current challenges, and an outlook is suggested on where elastomeric polyHIPEs can be expected to continue to make broad, positive impacts on materials and technology for the future.
Collapse
Affiliation(s)
| | - Neil Ayres
- N.A.:
email, ; tel, +01 513 556 9280; fax, +01 513 556 9239
| |
Collapse
|