1
|
Söder D, Schadt M, Petrovskii VS, Haraszti T, Rahimi K, Potemkin II, Kostina NY, Rodriguez‐Emmenegger C, Herrmann A. Pepticombisomes: Biomimetic Vesicles Crafted From Recombinant Supercharged Polypeptides with Uniformly Distributed Side-Chains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411497. [PMID: 39985267 PMCID: PMC12005736 DOI: 10.1002/advs.202411497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Cell membranes play a key role in bottom-up synthetic biology, as they enable interaction control, transport, and other essential functions. These ultra-thin, flexible, yet stable structures form through the self-assembly of lipids and proteins. While liposomes are common mimics, their synthetic membranes often fail to replicate natural properties due to poor structural control. To address this, pepticombs are introduced, a new family of supramolecular building blocks. They are synthesized by regularly appending anionic surfactants with lipid-long alkyl tails to cationic amino acid residues of recombinant elastin-like supercharged unfolded polypeptides (SUPs). Using microscopy techniques and molecular dynamics simulations, the formation of giant unilamellar vesicles, termed pepticombisomes, is demonstrated and their membrane properties are characterized. The molecular topology of pepticombs allows for precise mimicry of membrane thickness and flexibility, beyond classic polymersomes. Unlike the previously introduced ionically-linked comb polymers, all pepticombs exhibit a uniform degree of polymerization, composition, sequence, and spontaneous curvature. This uniformity ensures consistent hydrophobic tail distribution, facilitating intermolecular hydrogen bonding within the backbone. This generates elastic heterogeneities and the concomitant formation of non-icosahedral faceted vesicles, as previously predicted. Additionally, pepticombisomes can incorporate functional lipids, enhancing design flexibility.
Collapse
Affiliation(s)
- Dominik Söder
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Melina Schadt
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Vladislav S. Petrovskii
- Physics DepartmentLomonosov Moscow State UniversityLeninskie Gory 1–2Moscow119991Russian Federation
| | - Tamás Haraszti
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Khosrow Rahimi
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Igor I. Potemkin
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- Physics DepartmentLomonosov Moscow State UniversityLeninskie Gory 1–2Moscow119991Russian Federation
| | - Nina Yu. Kostina
- Institute for Bioengineering of Catalonia (IBEC)Carrer de Baldiri Reixac, 10, 12Barcelona08028Spain
| | - Cesar Rodriguez‐Emmenegger
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute for Bioengineering of Catalonia (IBEC)Carrer de Baldiri Reixac, 10, 12Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
- Biomedical Research NetworkingCenter in BioengineeringBiomaterials and NanomedicineThe Institute of Health Carlos IIIAv. Monforte deLemos 3–5Madrid28029Spain
| | - Andreas Herrmann
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| |
Collapse
|
2
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 PMCID: PMC12023540 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P. Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Vagenas D, Pispas S. Four-Component Statistical Copolymers by RAFT Polymerization. Polymers (Basel) 2024; 16:1321. [PMID: 38794514 PMCID: PMC11125712 DOI: 10.3390/polym16101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA475), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and benzyl methacrylate (BzMA). Monomer choice was based on factors such as the chemical nature of pendant functional groups, the polyelectrolyte/polyampholyte and amphiphilic character and the overall hydrophobic-hydrophilic balance (HLB) of the obtained quaterpolymers. Their synthesis was achieved via a one-pot reversible addition fragmentation chain transfer (RAFT) polymerization in two distinct compositions and molecular architectures, linear and hyperbranched, respectively, in order to explore the effects of macromolecular topology. The resulting statistical quaterpolymers were characterized via 1H-NMR and ATR-FTIR spectroscopies. Their behavior in aqueous solutions was studied by dynamic (DLS) and electrophoretic light scattering (ELS) and fluorescence spectroscopy (FS), producing vital information concerning their self-assembly and the structure of the formed aggregates. The physicochemical studies were extended by tuning parameters such as the solution pH and ionic strength. Finally, the quaterpolymer behavior in FBS/PBS solutions was investigated to test their colloid stability and biocompatibility in an in vivo-mimicking, biological fluid environment.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
4
|
Dykeman-Bermingham PA, Bogen MP, Chittari SS, Grizzard SF, Knight AS. Tailoring Hierarchical Structure and Rare Earth Affinity of Compositionally Identical Polymers via Sequence Control. J Am Chem Soc 2024; 146:8607-8617. [PMID: 38470430 DOI: 10.1021/jacs.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Macromolecule sequence, structure, and function are inherently intertwined. While well-established relationships exist in proteins, they are more challenging to define for synthetic polymer nanoparticles due to their molecular weight, sequence, and conformational dispersities. To explore the impact of sequence on nanoparticle structure, we synthesized a set of 16 compositionally identical, sequence-controlled polymers with distinct monomer patterning of dimethyl acrylamide and a bioinspired, structure-driving di(phenylalanine) acrylamide (FF). Sequence control was achieved through multiblock polymerizations, yielding unique ensembles of polymer sequences which were simulated by kinetic Monte Carlo simulations. Systematic analysis of the global (tertiary- and quaternary-like) structure in this amphiphilic copolymer series revealed the effect of multiple sequence descriptors: the number of domains, the hydropathy of terminal domains, and the patchiness (density) of FF within a domain, each of which impacted both chain collapse and the distribution of single- and multichain assemblies. Furthermore, both the conformational freedom of chain segments and local-scale, β-sheet-like interactions were sensitive to the patchiness of FF. To connect sequence, structure, and target function, we evaluated an additional series of nine sequence-controlled copolymers as sequestrants for rare earth elements (REEs) by incorporating a functional acrylic acid monomer into select polymer scaffolds. We identified key sequence variables that influence the binding affinity, capacity, and selectivity of the polymers for REEs. Collectively, these results highlight the potential of and boundaries of sequence control via multiblock polymerizations to drive primary sequence ensembles hierarchical structures, and ultimately the functionality of compositionally identical polymeric materials.
Collapse
Affiliation(s)
- Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew P Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Savannah F Grizzard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Yu H, Liu L, Yin R, Jayapurna I, Wang R, Xu T. Mapping Composition Evolution through Synthesis, Purification, and Depolymerization of Random Heteropolymers. J Am Chem Soc 2024; 146:6178-6188. [PMID: 38387070 PMCID: PMC10921401 DOI: 10.1021/jacs.3c13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Random heteropolymers (RHPs) consisting of three or more comonomers have been routinely used to synthesize functional materials. While increasing the monomer variety diversifies the side-chain chemistry, this substantially expands the sequence space and leads to ensemble-level sequence heterogeneity. Most studies have relied on monomer composition and simulated sequences to design RHPs, but the questions remain unanswered regarding heterogeneities within each RHP ensemble and how closely these simulated sequences reflect the experimental outcomes. Here, we quantitatively mapped out the evolution of monomer compositions in four-monomer-based RHPs throughout a design-synthesis-purification-depolymerization process. By adopting a Jaacks method, we first determined 12 reactivity ratios directly from quaternary methacrylate RAFT copolymerization experiments to account for the influences of competitive monomer addition and the reversible activation/deactivation equilibria. The reliability of in silico analysis was affirmed by a quantitative agreement (<4% difference) between the simulated RHP compositions and the experimental results. Furthermore, we mapped out the conformation distribution within each ensemble in different solvents as a function of monomer chemistry, composition, and segmental characteristics via high-throughput computation based on self-consistent field theory (SCFT). These comprehensive studies confirmed monomer composition as a viable design parameter to engineer RHP-based functional materials as long as the reactivity ratios are accurately determined and the livingness of RHP synthesis is ensured.
Collapse
Affiliation(s)
- Hao Yu
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
| | - Luofu Liu
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ruilin Yin
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Ivan Jayapurna
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Rui Wang
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Departent
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Patel R, Colmenares S, Webb MA. Sequence Patterning, Morphology, and Dispersity in Single-Chain Nanoparticles: Insights from Simulation and Machine Learning. ACS POLYMERS AU 2023; 3:284-294. [PMID: 37334192 PMCID: PMC10273411 DOI: 10.1021/acspolymersau.3c00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Single-chain nanoparticles (SCNPs) are intriguing materials inspired by proteins that consist of a single precursor polymer chain that has collapsed into a stable structure. In many prospective applications, such as catalysis, the utility of a single-chain nanoparticle will intricately depend on the formation of a mostly specific structure or morphology. However, it is not generally well understood how to reliably control the morphology of single-chain nanoparticles. To address this knowledge gap, we simulate the formation of 7680 distinct single-chain nanoparticles from precursor chains that span a wide range of, in principle, tunable patterning characteristics of cross-linking moieties. Using a combination of molecular simulation and machine learning analyses, we show how the overall fraction of functionalization and blockiness of cross-linking moieties biases the formation of certain local and global morphological characteristics. Importantly, we illustrate and quantify the dispersity of morphologies that arise due to the stochastic nature of collapse from a well-defined sequence as well as from the ensemble of sequences that correspond to a given specification of precursor parameters. Moreover, we also examine the efficacy of precise sequence control in achieving morphological outcomes in different regimes of precursor parameters. Overall, this work critically assesses how precursor chains might be feasibly tailored to achieve given SCNP morphologies and provides a platform to pursue future sequence-based design.
Collapse
|