1
|
Numata K. The Biology of Natural Polymers Accelerates and Expands the Science of Biomacromolecules: A Focus on Structural Proteins. Biomacromolecules 2025; 26:1393-1403. [PMID: 39965779 PMCID: PMC11898061 DOI: 10.1021/acs.biomac.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
This Perspective explores the use of biomacromolecules in natural materials synthesized by living organisms, such as spider silk, in the development of sustainable synthetic materials. Currently employed synthetic polymers lack the hierarchical complexity and unique properties of natural materials composed of biomacromolecules. By understanding the composition of these natural materials, it may be able to reproduce their properties synthetically. Additionally, research directions involving the use of renewable resources such as nitrogen and carbon dioxide from the air and seawater to develop biomacromolecules such as spider silk and biopolyester via photosynthetic organisms are reviewed. Next-generation biomacromolecule research will aid in the creation of a sustainable global society, advancing fields such as biomanufacturing, agriculture, aquaculture, and other industries.
Collapse
Affiliation(s)
- Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan
- Institute
for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
2
|
Ji X, Li Y, Wang J, Wang G, Ma B, Shi J, Cui C, Wang R. Silk Protein Gene Engineering and Its Applications: Recent Advances in Biomedicine Driven by Molecular Biotechnology. Drug Des Devel Ther 2025; 19:599-626. [PMID: 39881670 PMCID: PMC11776523 DOI: 10.2147/dddt.s504783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Silk protein, as a natural polymer material with unique structures and properties, exhibits tremendous potential in the biomedical field. Given the limited production and restricted properties of natural silk proteins, molecular biotechnology has been extensively applied in silk protein genetic engineering to produce novel silk proteins with specific properties. This review outlines the roles of major model organisms, such as silkworms and spiders, in silk protein production, and provides a detailed introduction to the applications of gene editing technologies (eg, CRISPR-Cas9), transgenic expression technologies, and synthetic biology techniques in silk protein genetic engineering. By analyzing the genetic factors influencing silk protein expression, this review further elaborates on the innovative applications of silk proteins in drug delivery systems, tissue engineering and regenerative medicine (eg, skin, bone, cartilage, and vascular repair), as well as antibacterial immune strategies. Notably, modified silk proteins expressed by transgenic silkworms demonstrate significant advantages in enhancing drug bioavailability and promoting cell proliferation and differentiation. In conclusion, silk protein gene engineering, through continuous innovations in molecular biotechnology, has provided an effective pathway for the production of high-performance silk protein materials. The extensive applications of these modified silk proteins in the biomedical field have not only expanded the functionality of silk proteins but also offered new approaches to address medical challenges. In the future, the development of silk protein gene engineering will further rely on interdisciplinary integration to promote in-depth research and the expansion of industrial applications of silk proteins.
Collapse
Affiliation(s)
- Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, People’s Republic of China
| | - Yanyan Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
| | - Jingsheng Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, People’s Republic of China
| | - Gang Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, People’s Republic of China
| | - Bin Ma
- Department of Cardiovascular Medicine, Taian City Taishan District People’s Hospital, Taian, Shandong, 271000, People’s Republic of China
| | - Jingfei Shi
- Department of Clinical and Basic Medicine, Shandong First Medical University, Jinan, Shandong, 250000, People’s Republic of China
| | - Chao Cui
- Scientific Research Department, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, 253000, People’s Republic of China
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, People’s Republic of China
| |
Collapse
|
3
|
Numata K, Kaplan DL. Silk Proteins: Designs from Nature with Multipurpose Utility and Infinite Future Possibilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411256. [PMID: 39468893 DOI: 10.1002/adma.202411256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Indexed: 10/30/2024]
Abstract
This is a Perspective on nature as a story-teller, where inputs of evolution drove the remarkable protein designs found in silks. This selection process has resulted in silk materials with novel chemistry and properties to support organism survival in nature, yet with newfound utility in everything from comic books and automobiles to medicine. With growing global concerns related to environmental health, silks also serve as an invaluable instructional guide to the future of sustainable material designs.
Collapse
Affiliation(s)
- Keiji Numata
- Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 6158510, Japan
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Colby, Medford, MA, 2155, USA
| |
Collapse
|
4
|
Peng X, Liu Z, Gao J, Zhang Y, Wang H, Li C, Lv X, Gao Y, Deng H, Zhao B, Gao T, Li H. Influence of Spider Silk Protein Structure on Mechanical and Biological Properties for Energetic Material Detection. Molecules 2024; 29:1025. [PMID: 38474537 PMCID: PMC10934110 DOI: 10.3390/molecules29051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.
Collapse
Affiliation(s)
- Xinying Peng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yuhao Zhang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hong Wang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Cunzhi Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Bin Zhao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Ting Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Huan Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| |
Collapse
|
5
|
Oktaviani NA, Malay AD, Goto M, Nagashima T, Hayashi F, Numata K. NMR assignment and dynamics of the dimeric form of soluble C-terminal domain major ampullate spidroin 2 from Latrodectus hesperus. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:249-255. [PMID: 37668860 DOI: 10.1007/s12104-023-10150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Spider dragline silk has attracted great interest due to its outstanding mechanical properties, which exceed those of man-made synthetic materials. Dragline silk, which is composed of at least major ampullate spider silk protein 1 and 2 (MaSp1 and MaSp2), contains a long repetitive domain flanked by N-terminal and C-terminal domains (NTD and CTD). Despite the small size of the CTD, this domain plays a crucial role as a molecular switch that regulates and directs spider silk self-assembly. In this study, we report the 1H, 13C, and 15N chemical shift assignments of the Latrodectus hesperus MaSp2 CTD in dimeric form at pH 7. Our solution NMR data demonstrated that this protein contains five helix regions connected by a flexible linker.
Collapse
Affiliation(s)
- Nur Alia Oktaviani
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Ali D Malay
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mami Goto
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystem Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Fumiaki Hayashi
- RIKEN Center for Biosystem Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku, Katsura, Kyoto, 615-8510, Japan.
- Institute for Advanced Bioscience, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|