1
|
Luo B, Zhang C, Zhang H, Su K, Jiang B, Cheng J, Jin Y. Lignin Tandem Catalytic Transformation to Phenolic Aryl Acrylic Esters as Plant Growth Regulators. CHEMSUSCHEM 2025; 18:e202402540. [PMID: 39745133 DOI: 10.1002/cssc.202402540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Based on the concept "Derived from Agroforestry, belong to (Servicing) Agroforestry", we herein achieved the tandem catalytic transformation of lignin to phenolic aryl acrylic esters, which can work as plant growth regulators. The transformation involves the first catalytic oxidative fractionation (COF) of lignin into aromatic aldehydes, which can further undergo Knoevenagel condensation with acids/esters with active Cα-H to generate the phenolic aryl acrylic esters. For the first lignin transformation, the Cu salt (CuSO4) in a 7.5 wt % NaOH aqueous solution could achieve the selective cleavage of lignin C-C bonds to provide a 25.0 wt % yield of aromatic aldehydes. Subsequently, the unique basic sites of the self-assembled hybrid system of CeO2 and 2-cyanopyridine could overcome the limitations of traditional homogeneous/heterogeneous bases and facilitate the condensation between phenolic-containing aromatic aldehydes and malonic ester to aryl acrylic esters. Furthermore, the lignin-based phenolic aryl acrylic esters showed different plant growth regulation activity based on the various structural groups for peppermint seed cultivation. The above results can expand the high-value utilization of lignin in the agroforestry field.
Collapse
Affiliation(s)
- Bingbing Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Huijun Zhang
- Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, P.R. China
| | - Kaiyi Su
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jinlan Cheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| |
Collapse
|
2
|
Abbas A, Lai DYF, Peng P, She D. Lignin-Based Functional Materials in Agricultural Application: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5685-5710. [PMID: 39998417 DOI: 10.1021/acs.jafc.4c11601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The demand for biodegradable, sustainable, and eco-friendly alternatives is growing in crop production and protection, which forces an urgent need for society to shift toward more sustainable agricultural development. In recent years, the development and research of lignin-based functional materials have gained increasing attention and impetus, and their use has become more widespread in sustainable agriculture. This review covers the latest research on the potential applications of lignin-based functional materials in plant protectants, sensors for pollutant detection, toxic element removal in soil and water, enzyme immobilization, plant growth regulators/biostimulants, hydrogels, and mulching films. Finally, future challenges and perspectives of lignin-based functional materials are discussed to provide a new strategy for the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Aown Abbas
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Diao She
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Javaid MH, Chen N, Yasin MU, Fan X, Neelam A, Rehman M, Haider Z, Bukhari SAH, Munir R, Ahmad I, Gan Y. Green-synthesized lignin nanoparticles enhance Zea mays resilience to salt stress by improving antioxidant metabolism and mitigating ultrastructural damage. CHEMOSPHERE 2024; 359:142337. [PMID: 38754490 DOI: 10.1016/j.chemosphere.2024.142337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Soil salinity poses a substantial threat to agricultural productivity, resulting in far-reaching consequences. Green-synthesized lignin nanoparticles (LNPs) have emerged as significant biopolymers which effectively promote sustainable crop production and enhance abiotic stress tolerance. However, the defensive role and underlying mechanisms of LNPs against salt stress in Zea mays remain unexplored. The present study aims to elucidate two aspects: firstly, the synthesis of lignin nanoparticles from alkali lignin, which were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Fourier Infrared Spectroscopy (FT-IR) and Energy Dispersive X-Ray Spectroscopy (EDX). The results confirmed the purity and morphology of LNPs. Secondly, the utilization of LNPs (200 mg/L) in nano priming to alleviate the adverse effects of NaCl (150 mM) on Zea mays seedlings. LNPs significantly reduced the accumulation of Na+ (17/21%) and MDA levels (21/28%) in shoots/roots while increased lignin absorption (30/31%), resulting in improved photosynthetic performance and plant growth. Moreover, LNPs substantially improved plant biomass, antioxidant enzymatic activities and upregulated the expression of salt-tolerant genes (ZmNHX3 (1.52 & 2.81 FC), CBL (2.83 & 3.28 FC), ZmHKT1 (2.09 & 4.87 FC) and MAPK1 (3.50 & 2.39 FC) in both shoot and root tissues. Additionally, SEM and TEM observations of plant tissues confirmed the pivotal role of LNPs in mitigating NaCl-induced stress by reducing damages to guard cells, stomata and ultra-cellular structures. Overall, our findings highlight the efficacy of LNPs as a practical and cost-effective approach to alleviate NaCl-induced stress in Zea mays plants. These results offer a sustainable agri-environmental strategy for mitigating salt toxicity and enhancing crop production in saline environments.
Collapse
Affiliation(s)
- Muhammad Haseeb Javaid
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nana Chen
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Asifa Neelam
- Department of Agronomy, Faculty of Agriculture Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Rehman
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zulqarnain Haider
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Asad Hussain Bukhari
- Department of Agronomy, Faculty of Agriculture Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Irshan Ahmad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Wang S, Wang X, Yue L, Li H, Zhu L, Dong Z, Long Y. Genome-Wide Identification and Characterization of Lignin Synthesis Genes in Maize. Int J Mol Sci 2024; 25:6710. [PMID: 38928419 PMCID: PMC11203529 DOI: 10.3390/ijms25126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Lignin is a crucial substance in the formation of the secondary cell wall in plants. It is widely distributed in various plant tissues and plays a significant role in various biological processes. However, the number of copies, characteristics, and expression patterns of genes involved in lignin biosynthesis in maize are not fully understood. In this study, bioinformatic analysis and gene expression analysis were used to discover the lignin synthetic genes, and two representative maize inbred lines were used for stem strength phenotypic analysis and gene identification. Finally, 10 gene families harboring 117 related genes involved in the lignin synthesis pathway were retrieved in the maize genome. These genes have a high number of copies and are typically clustered on chromosomes. By examining the lignin content of stems and the expression patterns of stem-specific genes in two representative maize inbred lines, we identified three potential stem lodging resistance genes and their interactions with transcription factors. This study provides a foundation for further research on the regulation of lignin biosynthesis and maize lodging resistance genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.W.); (X.W.); (L.Y.); (H.L.); (L.Z.)
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.W.); (X.W.); (L.Y.); (H.L.); (L.Z.)
| |
Collapse
|
5
|
Zhang W, Wang G, Zhang B, Sui W, Si C, Zhou L, Jia H. Green potassium fertilizer from enzymatic hydrolysis lignin: Effects of lignin fractionation on wheat seed germination and seedling growth. Int J Biol Macromol 2024; 262:130017. [PMID: 38336333 DOI: 10.1016/j.ijbiomac.2024.130017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Sustainably sourced lignin presents great potential as a green feedstock for fertilizer production but commercial fulfillment is still challenging owing to the mediocre fertilizer activity of lignin. To address this issue, an effective strategy to enhance the activity of lignin-based potassium fertilizer (LPF) is proposed through lignin fractionation. Three lignin fractions subdivided from enzymatic hydrolysis lignin (EHL) were adopted as the feedstock for LPF preparation, and the effect of lignin fractionation on wheat seed germination and seedling growth was investigated. Compared with the potassium fertilizer from unfractionated lignin, LPF-F1 showed significantly improved effects on promoting seed germination and seedling growth, which can be attributed to the high potassium content resulted from its abundant phenolic hydroxyl and carboxyl contents. Under the optimal treatment concentration (100 mg/L), LPF-F1 showed comparable promotion effect to commercial fulvic acid potassium on wheat seedling growth, suggesting the potential of LPF-F1 as commercial potassium fertilizer. Overall, this work reveals that lignin heterogeneity presents critical effects on the wheat seed germination and seedling growth of LPF, and the fertilizer activity of LPF can be substantially improved using fractionated lignin with low molecular weight as the raw material.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanhua Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Bo Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Zhou
- Tianjin Academy of Agricultural Sciences, Tianjin 300384, China.
| | - Hongyu Jia
- Shandong Academy of Agricultural Sciences, State Key Laboratory of Nutrient Use and Management, Shandong 250132, China.
| |
Collapse
|
6
|
Pudake RN, Pallavi. Novel application of bio-based nanomaterials for the alleviation of abiotic stress in crop plants. NANOTECHNOLOGY FOR ABIOTIC STRESS TOLERANCE AND MANAGEMENT IN CROP PLANTS 2024:181-201. [DOI: 10.1016/b978-0-443-18500-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Liu M, Liu H, Zhang J, Li C, Li Y, Yang G, Xia T, Huang H, Xu Y, Kong W, Hou B, Qi X, Wang J. Knockout of CAFFEOYL-COA 3-O-METHYLTRANSFERASE 6/6L enhances the S/G ratio of lignin monomers and disease resistance in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2023; 14:1216702. [PMID: 37868314 PMCID: PMC10585270 DOI: 10.3389/fpls.2023.1216702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023]
Abstract
Background Nicotiana tabacum is an important economic crop, which is widely planted in the world. Lignin is very important for maintaining the physiological and stress-resistant functions of tobacco. However, higher lignin content will produce lignin gas, which is not conducive to the formation of tobacco quality. To date, how to precisely fine-tune lignin content or composition remains unclear. Results Here, we annotated and screened 14 CCoAOMTs in Nicotiana tabacum and obtained homozygous double mutants of CCoAOMT6 and CCoAOMT6L through CRSIPR/Cas9 technology. The phenotype showed that the double mutants have better growth than the wild type whereas the S/G ratio increased and the total sugar decreased. Resistance against the pathogen test and the extract inhibition test showed that the transgenic tobacco has stronger resistance to tobacco bacterial wilt and brown spot disease, which are infected by Ralstonia solanacearum and Alternaria alternata, respectively. The combined analysis of metabolome and transcriptome in the leaves and roots suggested that the changes of phenylpropane and terpene metabolism are mainly responsible for these phenotypes. Furthermore, the molecular docking indicated that the upregulated metabolites, such as soyasaponin Bb, improve the disease resistance due to highly stable binding with tyrosyl-tRNA synthetase targets in Ralstonia solanacearum and Alternaria alternata. Conclusions CAFFEOYL-COA 3-O-METHYLTRANSFERASE 6/6L can regulate the S/G ratio of lignin monomers and may affect tobacco bacterial wilt and brown spot disease resistance by disturbing phenylpropane and terpene metabolism in leaves and roots of Nicotiana tabacum, such as soyasaponin Bb.
Collapse
Affiliation(s)
- Mingxin Liu
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Huayin Liu
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Jianduo Zhang
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Cui Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinke Li
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Guangyu Yang
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Tong Xia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Huang
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Yong Xu
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Weisong Kong
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Bingzhu Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jin Wang
- Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| |
Collapse
|