1
|
Driver MD, Onck PR. Selective phase separation of transcription factors is driven by orthogonal molecular grammar. Nat Commun 2025; 16:3087. [PMID: 40164612 PMCID: PMC11958648 DOI: 10.1038/s41467-025-58445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Protein production is critically dependent on gene transcription rates, which are regulated by RNA polymerase and a large collection of different transcription factors (TFs). How these transcription factors selectively address different genes is only partially known. Recent discoveries show that the differential condensation of separate TF families through phase separation may contribute to selectivity. Here we address this by conducting phase separation studies on six TFs from three different TF families with residue-scale coarse-grained molecular dynamics simulations. Our exploration of ternary TF phase diagrams reveals four dominant sticker motifs and two orthogonal driving forces that dictate the resultant condensate morphology, pointing to sequence-dependent orthogonal molecular grammar as a generic molecular mechanism that drives selective transcriptional condensation in gene expression.
Collapse
Affiliation(s)
- Mark D Driver
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9746AG, Groningen, Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9746AG, Groningen, Netherlands.
| |
Collapse
|
2
|
Driver MD, Postema J, Onck PR. The Effect of Dipeptide Repeat Proteins on FUS/TDP43-RNA Condensation in C9orf72 ALS/FTD. J Phys Chem B 2024; 128:9405-9417. [PMID: 39311028 PMCID: PMC11457143 DOI: 10.1021/acs.jpcb.4c04663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Condensation of RNA binding proteins (RBPs) with RNA is essential for cellular function. The most common familial cause of the diseases ALS and FTD is C9orf72 repeat expansion disorders that produce dipeptide repeat proteins (DPRs). We explore the hypothesis that DPRs disrupt the native condensation behavior of RBPs and RNA through molecular interactions resulting in toxicity. FUS and TDP43 are two RBPs known to be affected in ALS/FTD. We use our previously developed 1-bead-per-amino acid and a newly developed 3-bead-per-nucleotide molecular dynamics model to explore ternary phase diagrams of FUS/TDP43-RNA-DPR systems. We show that the most toxic arginine containing DPRs (R-DPRs) can disrupt the RBP condensates through cation-π interactions and can strongly sequester RNA through electrostatic interactions. The native droplet morphologies are already modified at small additions of R-DPRs leading to non-native FUS/TDP43-encapsulated condensates with a marbled RNA/DPR core.
Collapse
Affiliation(s)
- Mark D. Driver
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| | - Jasper Postema
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| | - Patrick R. Onck
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| |
Collapse
|
3
|
Saleh AH, Borhan G, Goujon F, Devémy J, Dequidt A, Malfreyt P, Sahihi M. Molecular and Energetic Descriptions of the Plasma Protein Adsorption onto the PVC Surface: Implications for Biocompatibility in Medical Devices. ACS OMEGA 2024; 9:38054-38065. [PMID: 39281894 PMCID: PMC11391563 DOI: 10.1021/acsomega.4c05044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Protein adsorption on material surfaces plays a key role in the biocompatibility of medical devices. Therefore, understanding the complex interplay of physicochemical factors driving this kind of biofouling is paramount for advancing biomaterial design. In this study, we investigated the interaction of the most prominent plasma proteins with polyvinyl chloride (PVC) as one of the ubiquitous materials in medical devices. Through molecular docking, we identified human serum albumin (HSA) as a plasma protein with the highest affinity for adsorption onto the PVC surface with the binding energy of -25.9 kJ mol-1. Subsequently, utilizing triplicate molecular dynamics (MD) simulations (0.5 μs each), we quantitatively analyzed the interactions between HSA and PVC, probing potential structural changes in the protein upon adsorption. Our findings revealed that water-mediated hydrogen bonds and van der Waals forces are key contributors in stabilizing HSA onto the surface of PVC without significant alteration to its secondary and tertiary structures. The observed distribution of water molecules further highlights the importance of the hydration layer in facilitating and modulating protein-polymer interactions. We further evaluated the thermodynamic properties governing the adsorption process by calculating the potential of mean force (PMF) along the direction normal to the surface. The computed Gibbs free energy of adsorption at 300 K (-507.4 kJ/mol) indicated a thermodynamically favored and spontaneous process. Moreover, our investigations across different temperatures (290 to 310 K) consistently showed an enthalpy-driven adsorption process.
Collapse
Affiliation(s)
- Amr H Saleh
- , Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Ghazal Borhan
- , Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Florent Goujon
- , Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Julien Devémy
- , Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Alain Dequidt
- , Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Patrice Malfreyt
- , Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Mehdi Sahihi
- , Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Liu ZH, Tsanai M, Zhang O, Forman-Kay J, Head-Gordon T. Computational Methods to Investigate Intrinsically Disordered Proteins and their Complexes. ARXIV 2024:arXiv:2409.02240v1. [PMID: 39279844 PMCID: PMC11398552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In 1999 Wright and Dyson highlighted the fact that large sections of the proteome of all organisms are comprised of protein sequences that lack globular folded structures under physiological conditions. Since then the biophysics community has made significant strides in unraveling the intricate structural and dynamic characteristics of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). Unlike crystallographic beamlines and their role in streamlining acquisition of structures for folded proteins, an integrated experimental and computational approach aimed at IDPs/IDRs has emerged. In this Perspective we aim to provide a robust overview of current computational tools for IDPs and IDRs, and most recently their complexes and phase separated states, including statistical models, physics-based approaches, and machine learning methods that permit structural ensemble generation and validation against many solution experimental data types.
Collapse
Affiliation(s)
- Zi Hao Liu
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Maria Tsanai
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Oufan Zhang
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Julie Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Heesink G, van den Oetelaar MCM, Semerdzhiev SA, Ottmann C, Brunsveld L, Blum C, Claessens MMAE. 14-3-3τ as a Modulator of Early α-Synuclein Multimerization and Amyloid Formation. ACS Chem Neurosci 2024; 15:1926-1936. [PMID: 38635928 PMCID: PMC11066837 DOI: 10.1021/acschemneuro.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
The aggregation of α-synuclein (αS) plays a key role in Parkinson's disease (PD) etiology. While the onset of PD is age-related, the cellular quality control system appears to regulate αS aggregation throughout most human life. Intriguingly, the protein 14-3-3τ has been demonstrated to delay αS aggregation and the onset of PD in various models. However, the molecular mechanisms behind this delay remain elusive. Our study confirms the delay in αS aggregation by 14-3-3τ, unveiling a concentration-dependent relation. Utilizing microscale thermophoresis (MST) and single-molecule burst analysis, we quantified the early αS multimers and concluded that these multimers exhibit properties that classify them as nanoscale condensates that form in a cooperative process, preceding the critical nucleus for fibril formation. Significantly, the αS multimer formation mechanism changes dramatically in the presence of scaffold protein 14-3-3τ. Our data modeling suggests that 14-3-3τ modulates the multimerization process, leading to the creation of mixed multimers or co-condensates, comprising both αS and 14-3-3τ. These mixed multimers form in a noncooperative process. They are smaller, more numerous, and distinctively not on the pathway to amyloid formation. Importantly, 14-3-3τ thus acts in the very early stage of αS multimerization, ensuring that αS does not aggregate but remains soluble and functional. This offers long-sought novel entries for the pharmacological modulation of PD.
Collapse
Affiliation(s)
- Gobert Heesink
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Maxime C. M. van den Oetelaar
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Slav A. Semerdzhiev
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Christian Blum
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Mireille M. A. E. Claessens
- Nanobiophysics,
Faculty of Science and Technology, MESA + Institute for Nanotechnology
and Technical Medical Centre, University
of Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|