1
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
2
|
Chhillar A, Jaiswal A. Hyaluronic Acid-Based Self-Healing Hydrogels for Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2404255. [PMID: 39722163 DOI: 10.1002/adhm.202404255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 12/28/2024]
Abstract
Diabetic wounds, particularly diabetic foot ulcers (DFUs), are significant threats to human well-being due to their impaired healing from poor circulation and high blood sugar, increased risk of infection and potential for severe complications like amputation, all compounded by peripheral neuropathy and chronic inflammation. Most therapies and dressings for DFUs focus on one symptom at a time, however, multifunctional smart self-healing hydrogels can withstand multifactorial motional diabetic wounds. Motional wounds are easy-to-split wounds that experience tension, compression, and movement caused by stress now and then. Hyaluronic acid (HA) based self-healing hydrogels stand out among other biomaterials due to their ability to cover irregular wound surfaces, maintain a moist environment, repair themselves when ruptured, and exhibit excellent biocompatibility. These self-healing hydrogels can repair damages caused by movement and recover the functional properties during healing. These hydrogels can also act as therapeutic delivery vehicles and tissue regeneration systems. This review demonstrates the potential of HA-based self-healing hydrogels for diabetic wound healing. Due to its self-healing capabilities, these hydrogels offer a customized therapeutic approach for motional diabetic wounds. The review also critically examines the challenges and future directions for HA-based self-healing hydrogels in diabetic wound healing.
Collapse
Affiliation(s)
- Anish Chhillar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
3
|
Pfeifer CS, Lucena FS, Tsuzuki FM. Preservation Strategies for Interfacial Integrity in Restorative Dentistry: A Non-Comprehensive Literature Review. J Funct Biomater 2025; 16:42. [PMID: 39997576 PMCID: PMC11856648 DOI: 10.3390/jfb16020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
The preservation of interfacial integrity in esthetic dental restorations remains a critical challenge, with hybrid layer degradation being a primary factor in restoration failure. This degradation is driven by a combination of host-derived enzymatic activity, including matrix metalloproteinases (MMPs), bacterial proteases, and hydrolytic breakdown of the polymerized adhesive due to moisture exposure. This review examines the multifactorial mechanisms underlying hybrid layer degradation and presents current advancements in restorative materials aimed at counteracting these effects. Principal strategies include collagen preservation through the inhibition of enzymatic activity, the integration of antimicrobial agents to limit biofilm formation, and the use of ester-free, hydrolysis-resistant polymeric systems. Recent research highlights acrylamide-based adhesives, which exhibit enhanced resistance to acidic and enzymatic environments, as well as dual functionality in collagen stabilization. Furthermore, innovations in bioactive resins and self-healing materials present promising future directions for developing adhesives that actively contribute to long-term restoration stability. These findings underscore the importance of continuous advancements in adhesive technology to enhance the durability and clinical performance of dental restorations.
Collapse
Affiliation(s)
- Carmem S. Pfeifer
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA; (F.S.L.); (F.M.T.)
| | | | | |
Collapse
|
4
|
Moradifar F, Sepahdoost N, Tavakoli P, Mirzapoor A. Multi-functional dressings for recovery and screenable treatment of wounds: A review. Heliyon 2025; 11:e41465. [PMID: 39831167 PMCID: PMC11742314 DOI: 10.1016/j.heliyon.2024.e41465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Considerable research has focused on advanced wound dressing technology over the past decade. The increasing emphasis on health and medical treatment is crucial to the modern healthcare system. Consequently, high-quality wound dressings with advanced standards are essential for superior medical care. Next-generation multifunctional wound dressings feature antibacterial properties, pain relief, biocompatibility, drug delivery, flexibility, and exudate absorption. Today, biomimetic models, tissue engineering, and synthetic skin are integrated with emerging wound healing technologies, offering a new perspective on wound management. Based on the classification model of multifunctional and advanced wound dressings, various AI-assisted wound management technologies are also highly efficient. The primary goals of advanced wound dressing technologies include faster wound healing, prevention of microbial contamination, preservation of skin aesthetics, reduction of treatment costs, and increased patient comfort. The latest technologies in this field not only promote faster healing and the treatment of deep wounds but also emphasize continuous control and monitoring of the healing process. These screenable wound dressings can be smart sensors to detect wound status based on parameters such as pH, moisture, temperature, and oxygen levels. This enables wound status monitoring and appropriate treatment responses. These technologies facilitate wound observation and monitoring, as well as the evaluation and control of the healing process through various models and strategies, such as the fabrication of functional nanomaterials, computer algorithms, and artificial intelligence. This review presents an overview of the most prominent new technologies in wound dressings, along with their innovative approaches.
Collapse
Affiliation(s)
- F. Moradifar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Advanced and Smart Nanobiosystems Lab, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - N. Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - P. Tavakoli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - A. Mirzapoor
- Research Center for Emergency and Disaster Resilience, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Advanced and Smart Nanobiosystems Lab, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Wearable Nanobiosensors Lab, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Wu J, Hua Z, Liu G. Supramolecular adhesives inspired from adhesive proteins and nucleic acids: molecular design, properties, and applications. SOFT MATTER 2025; 21:324-341. [PMID: 39688920 DOI: 10.1039/d4sm01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Bioinspired supramolecular adhesives have been recently emerging as novel functional materials, which have shown a wide range of applications in wearable sensors and tissue engineering such as tissue adhesives and wound dressings. In this review, we summarize and discuss two main types of biologically inspired supramolecular adhesives from adhesive proteins and nucleic acids. The widely studied catechol-based adhesives, that originated from adhesive proteins of marine organisms such as mussels, and recently emerging nucleobase-containing supramolecular adhesives are both introduced and discussed. Both bioinspired adhesives from nucleic acids and adhesive proteins involve multiple supramolecular interactions such as hydrogen bonding, hydrophobic interactions, π-π stacking, and so on. Several major types of these bioinspired adhesives are summarized, respectively, including polymer-based, hydrogel-based, and other types of adhesives. The novel molecular design and adhesion properties are focused on and highlighted for each type of bioinspired adhesive. In addition, the potential applications of these bioinspired supramolecular adhesives in different realms including tissue engineering and biomedical devices are discussed. This review concludes with issues and challenges in the area of the bioinspired adhesives, hopefully promoting further developments and broader applications of novel supramolecular adhesives.
Collapse
Affiliation(s)
- Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| |
Collapse
|
6
|
Wu C, Ning X, Liu Q, Zhou X, Guo H. Sustained Release of Curcumin from Cur-LPs Loaded Adaptive Injectable Self-Healing Hydrogels. Polymers (Basel) 2024; 16:3451. [PMID: 39771305 PMCID: PMC11677872 DOI: 10.3390/polym16243451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Biological tissue defects are typically characterized by various shaped defects, and they are prone to inflammation and the excessive accumulation of reactive oxygen species. Therefore, it is still urgent to develop functional materials which can fully occupy and adhere to irregularly shaped defects by injection and promote the tissue repair process using antioxidant and anti-inflammatory mechanisms. Herein, in this work, phenylboronic acid modified oxidized hyaluronic acid (OHAPBA) was synthesized and dynamically crosslinked with catechol group modified glycol chitosan (GCHCA) and guar gum (GG) into a hydrogel loaded with curcumin liposomes (Cur-LPs) which were relatively uniformly distributed around 180 nm. The hydrogel possessed rapid gelation within 30 s, outstanding injectability and tissue-adaptive properties with self-healing properties, and the ability to adhere to biological tissues and adapt to tissue movement. Moreover, good biocompatibility and higher DPPH scavenging efficiency were illustrated in the hydrogel. And a more sustainable release of curcumin from Cur-LPs-loaded hydrogels, which could last for 10 days, was achieved to improve the bioavailability of curcumin. Finally, they might be injected to fully occupy and adhere to irregularly shaped defects and promote the tissue repair process by antioxidant mechanisms and the sustained release of curcumin for anti-inflammation. And the hydrogel would have potential application as candidates in tissue defect repair.
Collapse
Affiliation(s)
- Caixia Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Xiaoqun Ning
- Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| | - Qunfeng Liu
- School of Automotive Engineering, Foshan Polytechnic, Foshan 528000, China;
| | - Xiaoyan Zhou
- Research Management Department, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huilong Guo
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| |
Collapse
|
7
|
Wang Y, Zhao M, Zou Y, Wang X, Zhang M, Sun Y. Hyaluronan Scaffold Decorated with Bifunctional Peptide Promotes Wound Healing via Antibacterial and Anti-Inflammatory. Biomacromolecules 2024; 25:7850-7860. [PMID: 39586057 DOI: 10.1021/acs.biomac.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The invasion of bacteria and inflammation impeded infected wounds heal. Here, a hyaluronan-based scaffold (HAG-g-C) was designed by cross-linking with gallic acid-modified gelatin to provide a protein microenvironment and decorated with cathelicidin-BF (CBF), a natural antimicrobial peptide, to remove bacterial infections and reverse the inflammatory environment. In vitro, HAG-g-C presented an antibacterial effect on Staphylococcus aureus and Escherichia coli. Meanwhile, it could drive the phenotypic switch of macrophage from M1 to M2 to accelerate tissue remodeling. In a mouse model of S. aureus-infected total skin defects, HAG-g-C inhibited the process of infection at the beginning of the wound and then regulated the M1 macrophage transformed to M2 phenotype on day 12. In addition, HAG-g-C induced collagen deposition, and reduced the expression of TNF-α, thereby significantly accelerating the reconstruction of infected wounds.
Collapse
Affiliation(s)
- Yingzi Wang
- Electron Microscopy Laboratory of Renal Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xiaojuan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Min Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
8
|
Li W, Yu J, Li Q, Wang H, Liu X, Li P, Jiang X, Yang J. Bacterial cellulose nanofiber reinforced self-healing hydrogel to construct a theranostic platform of antibacterial and enhanced wound healing. Int J Biol Macromol 2024; 281:136336. [PMID: 39370083 DOI: 10.1016/j.ijbiomac.2024.136336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
In order to promote wound healing, self-healing hydrogels with moisturizing property are employed as wound dressing. In this study, bacterial cellulose nanofibers (BCN) with high mechanical strength are used as reinforcement to improve the mechanical properties of self-healing hydrogels. A multifunctional self-healing hydrogel has been constructed by incorporating natural biomass, including Ag hybrid bacterial cellulose nanofiber (Ag-BCN), resveratrol (Res), and carbon nanodots (CNDs). The results of in vitro experiments demonstrate that the mechanical strength of the hybrid hydrogel was increased by 6 times with the addition of Ag-BCN, which also offers excellent antibacterial efficiency (S. aureus 99.99 % and E. coli 99.68 %). The hydrogel with CNDs can observe the healing process of the crack in real time and realize the controlled release of Res through photothermal effect. Moreover, the results of animal model experiments indicate that the prepared hydrogel could reduce the infection of the wound, effectively shorten the progress of wound healing (from 21d to 14 d). All the results imply that the prepared hydrogel has great promise in the application of skin wound healing.
Collapse
Affiliation(s)
- Wenping Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Junjie Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Qingxue Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Heng Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Pingyun Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Xiaohong Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Jiazhi Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
9
|
Xu H, Yuan X, Rao Y, Gao S, Guo J, Yan F. Poly(ionic liquid)-Flocculated Chlorella Loading Bactericidal and Antioxidant Hydrogel as a Biological Hydrogen Therapy for Diabetic Wound Dressing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34743-34756. [PMID: 38934271 DOI: 10.1021/acsami.4c07104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Infection and oxidative stress seriously hinder the healing of diabetic wounds, resulting in various serious health and clinical problems. Herein, a sustainable biological hydrogen (H2)-producing hyaluronic acid-based hydrogel patch (HAP-Chl) was constructed by loading an imidazolium-based poly(ionic liquid) (PIL) flocculated live Chlorella as a diabetic wound dressing. The PIL can flocculate Chlorella through electrostatic interactions between PIL and Chlorella to form Chlorella agglomerates, endowing the Chlorella in the central agglomerates with the ability to continuously produce H2 for 24 h under mild conditions. Combining the membrane disruption-related bactericidal mechanism of PIL and the antioxidant properties of the produced H2, HAP-Chl was determined to be antibacterial and antioxidant. In addition to exhibiting biocompatible and nontoxic activities, subsequent Staphylococcus aureus-infected chronic wound studies revealed that HAP-Chl is capable of promoting the healing of chronic wounds by effectively killing bacteria, reducing extensive ROS, relieving inflammation, and promoting the deposition of mature collagen and angiogenesis. This study provides a new strategy for constructing an in situ sustainable H2-producing hydrogel, enabling the formation of novel antibacterial and antioxidant material platforms with potential for wound dressing applications.
Collapse
Affiliation(s)
- Hui Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaonan Yuan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yu Rao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Condò I, Giannitelli SM, Lo Presti D, Cortese B, Ursini O. Overview of Dynamic Bond Based Hydrogels for Reversible Adhesion Processes. Gels 2024; 10:442. [PMID: 39057465 PMCID: PMC11275299 DOI: 10.3390/gels10070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Polymeric hydrogels are soft materials with a three-dimensional (3D) hydrophilic network capable of retaining and absorbing large amounts of water or biological fluids. Due to their customizable properties, these materials are extensively studied for developing matrices for 3D cell culture scaffolds, drug delivery systems, and tissue engineering. However, conventional hydrogels still exhibit many drawbacks; thus, significant efforts have been directed towards developing dynamic hydrogels that draw inspiration from organisms' natural self-repair abilities after injury. The self-healing properties of these hydrogels are closely associated with their ability to form, break, and heal dynamic bonds in response to various stimuli. The primary objective of this review is to provide a comprehensive overview of dynamic hydrogels by examining the types of chemical bonds associated with them and the biopolymers utilized, and to elucidate the chemical nature of dynamic bonds that enable the modulation of hydrogels' properties. While dynamic bonds ensure the self-healing behavior of hydrogels, they do not inherently confer adhesive properties. Therefore, we also highlight emerging approaches that enable dynamic hydrogels to acquire adhesive properties.
Collapse
Affiliation(s)
- Ilaria Condò
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
| | - Sara Maria Giannitelli
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Barbara Cortese
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ornella Ursini
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
11
|
Aggarwal M, Panigrahi H, Kotnees DK, Das P. Multifunctional Self-Healing Carbon Dot-Gelatin Bioadhesive: Improved Tissue Adhesion with Simultaneous Drug Delivery, Optical Tracking, and Photoactivated Sterilization. Biomacromolecules 2024; 25:3178-3189. [PMID: 38632677 DOI: 10.1021/acs.biomac.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Bioadhesives with all-inclusive properties for simultaneous strong and robust adhesion, cohesion, tracking, drug delivery, self-sterilization, and nontoxicity are still farfetched. Herein, a carbon dot (CD) is made to infuse each of the above-desired aspects with gelatin, an inexpensive edible protein. The CD derived through controlled hydrothermal pyrolysis of dopamine and terephthaldehyde retained -NH2, -OH, -COOH, and, most importantly, -CHO functionality on the CD surface for efficient skin adhesion and cross-linking. Facile fabrication of CD-gelatin bioadhesive through covalent conjugation of -CHO of the CD with -NH2 of gelatin through Schiff base formation was accomplished. This imparts remarkable self-healing attributes as well as excellent adhesion and cohesion evident from physicomechanical analysis in a porcine skin model. Improved porosity of the bioadhesive allows loading hemin as a model drug whose disembarkment is tracked with intrinsic CD photoluminescence. In a significant achievement, antibiotic-free self-sterilization of bioadhesive is demonstrated through visible light (white LED, 23 W)-irradiated photosensitization of the CD to produce reactive oxygen species for annihilation of both Gram-positive and Gram-negative bacteria with exceptional efficacy (99.9%). Thus, a comprehensive CD-gelatin bioadhesive for superficial and localized wound management is reported as a promising step for the transformation of the bioadhesive domain through controlled nanotization for futuristic clinical translations.
Collapse
Affiliation(s)
- Maansi Aggarwal
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Harekrishna Panigrahi
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Dinesh Kumar Kotnees
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| |
Collapse
|
12
|
Milne C, Song R, Johnson M, Zhao C, Santoro Ferrer F, A S, Lyu J, Wang W. Dual-Modified Hyaluronic Acid for Tunable Double Cross-Linked Hydrogel Adhesives. Biomacromolecules 2024; 25:2645-2655. [PMID: 38456398 PMCID: PMC11005013 DOI: 10.1021/acs.biomac.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Conventional techniques for the closure of wounds, such as sutures and staples, have significant drawbacks that can negatively impact wound healing. Tissue adhesives have emerged as promising alternatives, but poor adhesion, low mechanical properties, and toxicity have hindered their widespread clinical adoption. In this work, a dual modified, aldehyde and methacrylate hyaluronic acid (HA) biopolymer (HA-MA-CHO) has been synthesized through a simplified route for use as a double cross-linked network (DCN) hydrogel (HA-MA-CHO-DCN) adhesive for the effective closure and sealing of wounds. HA-MA-CHO-DCN cross-links in two stages: initial cross-linking of the aldehyde functionality (CHO) of HA-MA-CHO using a disulfide-containing cross-linker, 3,3'-dithiobis (propionic hydrazide) (DTPH), leading to the formation of a self-healing injectable gel, followed by further cross-linking via ultraviolet (UV) initiated polymerization of the methacrylate (MA) functionality. This hydrogel adhesive shows a stable swelling behavior and remarkable versatility as the storage modulus (G') has shown to be highly tunable (103-105 Pa) for application to many different wound environments. The new HA-MA-CHO-DCN hydrogel showed excellent adhesive properties by surpassing the burst pressure and lap-shear strength for the widely used bovine serum albumin-glutaraldehyde (BSAG) glue while maintaining excellent cell viability.
Collapse
Affiliation(s)
- Cameron Milne
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rijian Song
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Melissa Johnson
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Chunyu Zhao
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Francesca Santoro Ferrer
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Sigen A
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
- School
of Medicine, Anhui University of Science
and Technology, Huainan 232001, China
| | - Jing Lyu
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| |
Collapse
|
13
|
Omidian H, Wilson RL, Gill EJ. Advancements and Challenges in Self-Healing Hydrogels for Wound Care. Gels 2024; 10:241. [PMID: 38667660 PMCID: PMC11048759 DOI: 10.3390/gels10040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript explores self-healing hydrogels as innovative solutions for diverse wound management challenges. Addressing antibiotic resistance and tailored wound care, these hydrogels exhibit promising outcomes, including accelerated wound closure and tissue regeneration. Advancements in multifunctional hydrogels with controlled drug release, antimicrobial properties, and real-time wound assessment capabilities signal a significant leap toward patient-centered treatments. However, challenges such as scalability, long-term safety evaluation, and variability in clinical outcomes persist. Future directions emphasize personalized medicine, manufacturing innovation, rigorous evaluation through clinical trials, and interdisciplinary collaboration. This manuscript features the ongoing pursuit of effective, adaptable, and comprehensive wound care solutions to transform medical treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (E.J.G.)
| | | | | |
Collapse
|