1
|
A homogalacturonan from Lonicera japonica Thunb. disrupts angiogenesis via epidermal growth factor receptor and Delta-like 4 associated signaling. Glycoconj J 2022; 39:725-735. [PMID: 36306024 DOI: 10.1007/s10719-022-10088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 01/09/2023]
Abstract
A homogeneous polysaccharide named as LJW2F2 was extracted and purified from the flowers of Lonicera japonica Thunb. Structural characteristic indicated that LJW2F2 was a homogalacturonan composed of α-1,4-D-galacturonic acid with a molecular weight of 7.2 kDa. Previous investigation suggested that homogalacturonan might impede angiogenesis, however the mechanism is still vague. Here we reported that LJW2F2 significantly disrupted capillary-like tube formation of human microvascular endothelia cells (HMEC-1) on matrigel as well as the cells migration. Mechanism study revealed that LJW2F2 might inactivate phosphorylation of epidermal growth factor receptor (EGFR), subsequently suppress Raf, mitogen-activated protein kinase (MEK) and extracellular-related kinase (ERK) phosphorylation. Moreover, LJW2F2 markedly decreased the expression of Notch1 and Delta-like ligand 4 (Dll4). Therefore, our results suggested that LJW2F2 might be a potential angiogenesis inhibitor via disturbing multiple signaling pathways.
Collapse
|
2
|
Nguyen H, Herrmann F, König S, Goycoolea F, Hensel A. Structural characterization of the carbohydrate and protein part of arabinogalactan protein from Basella alba stem and antiadhesive activity of polysaccharides from B. alba against Helicobacter pylori. Fitoterapia 2022; 157:105132. [DOI: 10.1016/j.fitote.2022.105132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 01/17/2023]
|
3
|
Muscolino E, Di Stefano AB, Trapani M, Sabatino MA, Giacomazza D, Moschella F, Cordova A, Toia F, Dispenza C. Injectable xyloglucan hydrogels incorporating spheroids of adipose stem cells for bone and cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112545. [PMID: 34857257 DOI: 10.1016/j.msec.2021.112545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/31/2021] [Accepted: 11/07/2021] [Indexed: 12/12/2022]
Abstract
Cartilage or bone regeneration approaches based on the direct injection of mesenchymal stem cells (MSCs) at the lesion site encounter several challenges, related to uncontrolled cell spreading and differentiation, reduced cell viability and poor engrafting. This work presents a simple and versatile strategy based on the synergic combination of in-situ forming hydrogels and spheroids of adipose stem cells (SASCs) with great potential for minimally invasive regenerative interventions aimed to threat bone and cartilage defects. Aqueous dispersions of partially degalactosylated xyloglucan (dXG) are mixed with SASCs derived from liposuction and either a chondroinductive or an osteoinductive medium. The dispersions rapidly set into hydrogels when temperature is brought to 37 °C. The physico-chemical and mechanical properties of the hydrogels are controlled by polymer concentration. The hydrogels, during 21 day incubation at 37 °C, undergo significant structural rearrangements that support cell proliferation and spreading. In formulations containing 1%w dXG cell viability increases up to 300% for SASCs-derived osteoblasts and up to 1000% for SASCs-derived chondrocytes if compared with control 2D cultures. The successful differentiation into the target cells is supported by the expression of lineage-specific genes. Cell-cell and cell-matrix interactions are also investigated. All formulations resulted injectable, and the incorporated cells are fully viable after injection.
Collapse
Affiliation(s)
- Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Marco Trapani
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Maria Antonietta Sabatino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146, Palermo, Italy
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy; Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy; Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Francesca Toia
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
4
|
Simard M, Rioux G, Morin S, Martin C, Guérin SL, Flamand N, Julien P, Fradette J, Pouliot R. Investigation of Omega-3 Polyunsaturated Fatty Acid Biological Activity in a Tissue-Engineered Skin Model Involving Psoriatic Cells. J Invest Dermatol 2021; 141:2391-2401.e13. [PMID: 33857488 DOI: 10.1016/j.jid.2021.02.755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Clinical studies have shown that diets enriched with omega-3 (also know as n-3) polyunsaturated fatty acids could relieve the symptoms of patients with psoriasis. However, the mechanisms involved remain poorly understood. The aim of this study was to investigate the effects of α-linolenic acid (ALA) on the proliferation and differentiation of psoriatic keratinocytes in a three-dimensional skin model. Skin models featuring healthy (healthy substitute) or psoriatic (psoriatic substitute) cells were engineered by the self-assembly method of tissue engineering using a culture medium supplemented with 10 μM ALA in comparison with the regular unsupplemented medium. ALA decreased keratinocyte proliferation and improved psoriatic substitute epidermal differentiation, as measured by decreased Ki67 staining and increased protein expression of FLG and loricrin. The added ALA was notably incorporated into the epidermal phospholipids and metabolized into long-chain n-3 polyunsaturated fatty acids, mainly eicosapentaenoic acid and n-3 docosapentaenoic acid. ALA supplementation led to increased levels of eicosapentaenoic acid derivatives (15-hydroxyeicosapentaenoic acid and 18-hydroxyeicosapentaenoic acid) as well as a decrease in levels of omega-6 (also know as n-6) polyunsaturated fatty acid lipid mediators (9-hydroxyoctadecadienoic acid, 12-hydroxyeicosatetraenoic acid, and leukotriene B4). Furthermore, the signal transduction mediators extracellular signal‒regulated kinases 1 and 2 were the kinases most activated after ALA supplementation. Taken together, these results show that ALA decreases the pathologic phenotype of psoriatic substitutes by normalizing keratinocyte proliferation and differentiation in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Geneviève Rioux
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Cyril Martin
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Sylvain L Guérin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; CUO-Recherche, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département de chirurgie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
5
|
γ-Propoxy-Sulfo-Lichenan Induces In Vitro Cell Differentiation of Human Keratinocytes. Molecules 2019; 24:molecules24030574. [PMID: 30764551 PMCID: PMC6384931 DOI: 10.3390/molecules24030574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 11/17/2022] Open
Abstract
Background: As non-cellulosic β-d-glucans are known to exert wound-healing activity by triggering keratinocytes into cellular differentiation, the functionality of a semisynthetic lichenan-based polysaccharide on skin cell physiology was investigated. Methods: γ-Propoxy-sulfo-lichenan (γ-PSL, molecular weight 52 kDa, β-1,3/1,4-p-d-Glucose, degree of substitution 0.7) was prepared from lichenan. Differentiation of primary human keratinocytes was assayed by the protein analysis of differentiation specific markers and by gene expression analysis (qPCR). The gene array gave insight into the cell signaling induced by the polysaccharide. Results: γ-PSL (1 to 100 μg/mL) triggered keratinocytes, in a concentration-dependent manner, into the terminal differentiation, as shown by the increased protein expression of cytokeratin 1 (KRT1). Time-dependent gene expression analysis proved differentiation-inducing effects, indicating strong and fast KRT1 gene expression, while KRT10 expression showed a maximum after 12 to 24 h, followed by downregulation to the basal level. Involucrin gene expression was only changed to a minor extent, which was similar to loricrin and transglutaminase. Gene array indicated the influence of γ-PSL on MAP kinase and TGF-β mediated signaling towards keratinocyte differentiation. Conclusion: The propoxylated lichenan may improve wound healing by topical application to promote the terminal barrier formation of keratinocytes.
Collapse
|
6
|
β-1,3/1,4-Glucan Lichenan from Cetraria islandica (L.) ACH. induces cellular differentiation of human keratinocytes. Fitoterapia 2018; 129:226-236. [DOI: 10.1016/j.fitote.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
|
7
|
Bader Ul Ain H, Saeed F, Ahmad N, Imran A, Niaz B, Afzaal M, Imran M, Tufail T, Javed A. Functional and health-endorsing properties of wheat and barley cell wall’s non-starch polysaccharides. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1489837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huma Bader Ul Ain
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Niaz
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tabussam Tufail
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahsan Javed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
8
|
Mozafari Z, Massoumi B, Jaymand M. A Novel Stimuli-Responsive Magnetite Nanocomposite as De Novo Drug Delivery System. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1471718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zahra Mozafari
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | - Mehdi Jaymand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Liu T, Song D, Dong J, Zhu P, Liu J, Liu W, Ma X, Zhao L, Ling S. Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure. Front Physiol 2017; 8:238. [PMID: 28484397 PMCID: PMC5402617 DOI: 10.3389/fphys.2017.00238] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. Myocardial fibrosis results from increased myofibroblast activity and excessive extracellular matrix deposition. Various cells and molecules are involved in this process, providing targets for potential drug therapies. Currently, the main detection methods of myocardial fibrosis rely on serum markers, cardiac magnetic resonance imaging, and endomyocardial biopsy. This review summarizes our current knowledge regarding the pathophysiology, quantitative assessment, and novel therapeutic strategies of myocardial fibrosis.
Collapse
Affiliation(s)
- Tong Liu
- Department of Cardiology, Capital Medical University, Beijing AnZhen HospitalBeijing, China
| | - Deli Song
- Department of Cardiology, Capital Medical University, Beijing AnZhen HospitalBeijing, China
| | - Jianzeng Dong
- Department of Cardiology, Capital Medical University, Beijing AnZhen HospitalBeijing, China
| | - Pinghui Zhu
- Department of Cardiology, Beijing Changping HospitalBeijing, China
| | - Jie Liu
- Department of Vascular Surgery, Chinese PLA General HospitalBeijing, China
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Wei Liu
- Department of Cardiology, Capital Medical University, Beijing AnZhen HospitalBeijing, China
| | - Xiaohai Ma
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical UniversityBeijing, China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical UniversityBeijing, China
| | - Shukuan Ling
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training CenterBeijing, China
| |
Collapse
|
10
|
Mei L, Wang Y, Tong A, Guo G. Facile electrospinning of an efficient drug delivery system. Expert Opin Drug Deliv 2016; 13:741-53. [PMID: 26787362 DOI: 10.1517/17425247.2016.1142525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| |
Collapse
|