1
|
Aliabbasi N, Mehrabi S, Kheirandish M, Gashtasbi S, Mokhtarian M, Hosseini-Isfahani M, Vakilinezami A, Vakilinezami P, Mostaghim T, Rezaeinia H. The novel nano-electrospray delivery of curcumin via ultrasound assisted Balangu (Lallemantia royleana) hydrocolloid-chickpea protein interaction. Food Chem 2025; 484:144388. [PMID: 40267673 DOI: 10.1016/j.foodchem.2025.144388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
This research examines the development of complexes between chickpea protein isolate and Balangu seed gum using ultrasound (200 W, 350 W, 500 W, 650 W, and 800 W) to curcumin delivery by electrospray. Higher ultrasound powers (650 W and 800 W) enhanced the formation of complexes, as confirmed by FTIR and XRD. Complexes treated at 650 W demonstrated optimal solution properties for electrospraying, featuring the lowest surface tension of 31.79 mN/m and the highest zeta potential an electrical conductivity of -68.46 mV, and 1896 μS/cm, respectively. The electrospray effectively produced nanoparticles from the 650 W-treated complex solution, achieving a high curcumin encapsulation efficiency (93.67 ± 1.22 %). Loading curcumin into the complex solution altered the nanoparticles' morphology, resulting in more uniform particles. In the small intestine simulation, the hydrolysis of complex particles led to a significant curcumin release of 100 % within 480 min. The best-fitting model for curcumin release from complexes was the Peppas-Sahlin.
Collapse
Affiliation(s)
- Neda Aliabbasi
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-11167 Karadj, Iran
| | - Shima Mehrabi
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Kheirandish
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Gashtasbi
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-11167 Karadj, Iran
| | - Morassa Mokhtarian
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mona Hosseini-Isfahani
- Department of Food Science and Technology, Islamic Azad University, Safadasht Branch, Tehran, Iran
| | - Amir Vakilinezami
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Research and Development, Zar Sauce Company, Zar Industrial and Research Group, Karaj, Iran
| | | | - Toktam Mostaghim
- Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Hassan Rezaeinia
- Department of Research and Development, Zar Sauce Company, Zar Industrial and Research Group, Karaj, Iran; Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), km 12 Mashhad-Quchan Highway, P.O. Box: 91895-157-356, Mashhad, Iran.
| |
Collapse
|
2
|
Muhammad AH, Asma M, Hamed YS, Hameed A, Abdullah, Jian W, Peilong S, Kai Y, Ming C. Enhancing cellulose-stabilized multiphase/Pickering emulsions systems: A molecular dynamics perspective. Int J Biol Macromol 2024; 277:134244. [PMID: 39084436 DOI: 10.1016/j.ijbiomac.2024.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Cellulose stabilized multiphase systems (CSMS) have garnered significant attention due to their ultra-stabilization mechanism and vast potential across different fields. CSMS have found valuable applications in scientific disciplines, including Food Science, Pharmaceutical Science, Material Science, and related fields, owing to their beneficial attributes such as sustainability, safety, renewability, and non-toxicity. Furthermore, MPS exhibit novel characteristics that enable multiple mechanisms to produce HIPEs, aerogels, and oleogels revealing undiscovered information. Therefore, to explore the undiscovered phenomena of MPS, molecular level insights using advanced simulation/computational approaches are essential. The molecular dynamics simulation (MDS), play a valuable role in analyzing the interactions of ternary interphase. The MDS have successfully quantified the interactions of MPS by generating, visualizing, and analyzing trajectories. Through MDS, researchers have explored CSMS at the molecular level and advanced their applications in 3D printing, packaging, preparation, drug delivery, encapsulation, biosensors, electronic devices, biomaterials, and energy conservation. This review highlights the remarkable advancements in CSMS over the past five years, along with contributions of MDS in evaluating the relationships that dictate the functionality and properties of CSMS. By integrating experimental and computational methods, we underscore the potential to innovate and optimize these multiphase systems for groundbreaking applications.
Collapse
Affiliation(s)
- Ahsan Hafiz Muhammad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| | - Mumtaz Asma
- College of Resources and Environment, South China University of Technology, Guangzhou 510640, China
| | - Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Aneela Hameed
- Department of Animal Food Products Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60600, Pakistan
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Wang Jian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Sun Peilong
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Yang Kai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| |
Collapse
|
3
|
Ben Yahia A, Aschi A, Faria B, Hilliou L. Structure-Elasticity Relationships in Hybrid-Carrageenan Hydrogels Studied by Image Dynamic Light Scattering, Ultra-Small-Angle Light Scattering and Dynamic Rheometry. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4331. [PMID: 39274720 PMCID: PMC11395807 DOI: 10.3390/ma17174331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024]
Abstract
Hybrid-carrageenan hydrogels are characterized using novel techniques based on high-resolution speckle imaging, namely image dynamic light scattering (IDLS) and ultra-small-angle light scattering (USALS). These techniques, used to probe the microscopic structure of the system in sol-gel phase separation and at different concentrations in the gel phase, give access to a better understanding of the network's topology on the basis of fractals in the dense phase. Observations of the architecture and the spatial and the size distributions of gel phase and fractal dimension were performed by USALS. The pair-distance distribution function, P(r), extracted from USALS patterns, is a new methodology of calculus for determining the network's internal size with precision. All structural features are systematically compared with a linear and non-linear rheological characterization of the gels and structure-elasticity relationships are identified in the framework of fractal colloid gels in the diffusion limit.
Collapse
Affiliation(s)
- Amine Ben Yahia
- Laboratoire de Physique de la Matière Molle et de la Modélisation Electromagnétique, Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire, Tunis 2092, Tunisia
| | - Adel Aschi
- Laboratoire de Physique de la Matière Molle et de la Modélisation Electromagnétique, Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire, Tunis 2092, Tunisia
| | - Bruno Faria
- Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 5800-048 Guimarães, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 5800-048 Guimarães, Portugal
| |
Collapse
|
4
|
Wu Y, Liu Y, Yang X, Tong M, Jiang X, Gu X. Triple-Responsive, Multimodal, Visual Electronic Skin toward All-in-One Health Management for Gestational Diabetes Mellitus. ACS Sens 2024; 9:2634-2644. [PMID: 38669562 DOI: 10.1021/acssensors.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders during pregnancy, leading to serious complications for pregnant women and a threat to life safety of infants. Therefore, it is particularly important to establish a multipurpose monitoring pathway to important physiological indicators of pregnant women. In this work, three kinds of double network hydrogels are prepared with poly(vinyl alcohol) (PVA), borax, and cellulose ethers with varying substituents of methyl (methyl cellulose, MC), hydroxypropyl (hydroxypropyl cellulose, HPC), or both (hydroxypropyl methyl cellulose, HPMC), respectively. The corresponding toughness (143.9, 102.3, and 135.9 kJ cm-3) and conductivity (0.69, 0.45, and 0.51 S m-1) of the hydrogels demonstrate that PB-MC was endowed with the prominent performance. Molecular dynamics simulations further revealed the essence that hydrogen bond interactions between PVA and cellulose ethers play a critical role in regulating the structure and properties of hydrogels. Thermochromic capsule powders (TCPs) were subsequently doped in to achieve a composite hydrogel (TCPs@PB-MC) to indicate the change in human body temperature. Furthermore, the process of the TCPs@PB-MC response to glucose, pH, and temperature was tracked in-depth through the electrochemical window. This work provides a novel strategy for all-in-one health management of GDM.
Collapse
Affiliation(s)
- Yue Wu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
- College of Chemistry and Chemical Engineering, Jinan University, Jinan 250024, China
| | - Yong Liu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xueting Yang
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Mingqiong Tong
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, Jinan University, Jinan 250024, China
| | - Xiangling Gu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| |
Collapse
|
5
|
Dodo OJ, Petit L, Rajawasam CWH, Hartley CS, Konkolewicz D. Tailoring Lifetimes and Properties of Carbodiimide-Fueled Covalently Cross-linked Polymer Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Obed J. Dodo
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Leilah Petit
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Chamoni W. H. Rajawasam
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - C. Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| |
Collapse
|
6
|
Dashtimoghadam E, Fahimipour F, Tongas N, Tayebi L. Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Sci Rep 2020; 10:11764. [PMID: 32678204 PMCID: PMC7366644 DOI: 10.1038/s41598-020-68221-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Wound instability and poor functional vascularization in bone tissue engineering lead to lack of tissue integration and ultimate failure of engineered grafts. In order to harness the regenerative potential of growth factors and stimulate bone healing, present study aims to design multifunctional cell therapy microcarriers with the capability of sequential delivery of essential growth factors, bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). An on-chip double emulsion method was implemented to generate monodisperse VEGF encapsulated microcarriers. Bio-inspired poly(3,4-dihydroxyphenethylamine) (PDA) was then functionalized to the microcarriers surface for BMP-2 conjugation. The microcarriers were seeded with mesenchymal stem cells (MSCs) using a dynamic culture technique for cells expansion. Finally, the microcarriers were incorporated into an injectable alginate-RGD hydrogel laden with endothelial cells (ECs) for further analysis. The DNA and calcium content, as well as ALP activity of the construct were analyzed. The confocal fluorescent microscopy was employed to monitor the MSCs and tunneling structure of ECs. Eventually, the capability of developed microcarriers for bone tissue formation was examined in vivo. Microfluidic platform generated monodisperse VEGF-loaded PLGA microcarriers with size-dependent release patterns. Microcarriers generated with the on-chip technique showed more sustained VEGF release profiles compared to the conventional bulk mixing method. The PDA functionalization of microcarriers surface not only provided immobilization of BMP-2 with prolonged bioavailability, but also enhanced the attachment and proliferation of MSCs. Dynamic culturing of microcarriers showcased their great potential to boost MSCs population required for stem cell therapy of bone defects. ALP activity and calcium content analysis of MSCs-laden microcarriers loaded into injectable hydrogels revealed their capability of tunneling formation, vascular cell growth and osteogenic differentiation. The in vivo histology and real-time polymerase chain reaction analysis revealed that transplantation of MSC-laden microcarriers supports ectopic bone formation in the rat model. The presented approach to design bioactive microcarriers offer sustained sequential delivery of bone ECM chemical cues and offer an ideal stabilized 3D microenvironment for patient-specific cell therapy applications. The proposed methodology is readily expandable to integrate other cells and cytokines in a tuned spatiotemporal manner for personalized regenerative medicine.
Collapse
Affiliation(s)
| | - Farahnaz Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikita Tongas
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Tunable viscoelastic features of aqueous mixtures of thermosensitive ethyl(hydroxyethyl)cellulose and cellulose nanowhiskers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Yang Y, Wu W, Liu H, Xu H, Zhong Y, Zhang L, Chen Z, Sui X, Mao Z. Aggregation behaviors of thermo-responsive methylcellulose in water: A molecular dynamics simulation study. J Mol Graph Model 2020; 97:107554. [PMID: 32035312 DOI: 10.1016/j.jmgm.2020.107554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/24/2019] [Accepted: 01/29/2020] [Indexed: 01/22/2023]
Abstract
The aggregation behaviors of methylcellulose (MC) in aqueous solution were investigated using all-atom molecular dynamic simulations (MD). The interactions between MC chains and water molecules at different temperatures were investigated by a series of MD analyses, such as the solvent accessible surface area, number of hydrogen bonds, radial distribution functions and the interaction energies. Constant temperature simulations and heating simulations of MC aqueous solution were carried out in this work. In the simulations at three constant temperatures (25 °C, 50 °C and 75 °C), the aggregation behaviors of MC chains were affected by the temperature. In the heating simulation (25 °C ∼ 75 °C), temperature increases were accompanied by decreases in interactions between MC and water molecules, and by increases in interactions between MC chains, which led to the aggregation of MC chains. The degree of aggregation of MC chains increased with the rise of temperature.
Collapse
Affiliation(s)
- Yang Yang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Wei Wu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Hongchen Liu
- Textile College, Zhongyuan University of Technology, Zhengzhou, 450007, Henan Province, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhize Chen
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
9
|
Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. Int J Biol Macromol 2020; 148:434-448. [PMID: 31953173 DOI: 10.1016/j.ijbiomac.2020.01.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 01/02/2023]
Abstract
Design of bioactive three-dimensional scaffolds to support bone tissue repair and regeneration become a key area of research in tissue engineering. Herein, porous hybrid hydrogels composed of dextran incorporated with nanocrystalline β-tricalcium phosphate (β-TCP) particles were tailor made as scaffolds for bone tissue engineering. β-TCP was successfully introduced within the dextran networks crosslinked through intermolecular ionic interactions and hydrogen bonding confirmed by FTIR spectroscopy. The effect of β-TCP content on equilibrium water uptake and swelling kinetics of composite hydrogels was investigated. It was found that the homogeneous distribution of β-TCP nanoparticles through the hydrogel matrix contributes to higher porosity and swelling capacity. In depth swelling measurements revealed that while in the early stage of swelling, water diffusion follows the Fick's law, for longer time swelling behavior of hydrogels undergo the second order kinetics. XRD measurements represented the formation of apatite layer on the surface of nanocomposite hydrogels after immersion in the SBF solution, which implies their bioactivity. Cell culture assays confirmed biocompatibility of the developed hybrid hydrogels in vitro. The obtained results converge to offer dextran/β-TCP nanocomposite hydrogels as promising scaffolds for bone regeneration applications.
Collapse
|
10
|
Fahimipour F, Dashtimoghadam E, Mahdi Hasani-Sadrabadi M, Vargas J, Vashaee D, Lobner DC, Jafarzadeh Kashi TS, Ghasemzadeh B, Tayebi L. Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dent Mater 2019; 35:990-1006. [PMID: 31027908 PMCID: PMC7193177 DOI: 10.1016/j.dental.2019.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Design of bioactive scaffolds with osteogenic capacity is a central challenge in cell-based patient-specific bone tissue engineering. Efficient and spatially uniform seeding of (stem) cells onto such constructs is vital to attain functional tissues. Herein we developed heparin functionalized collagen gels supported by 3D printed bioceramic scaffolds, as bone extracellular matrix (ECM)-mimetic matrices. These matrices were designed to enhance cell seeding efficiency of mesenchymal stem cells (MSCs) as well as improve their osteogenic differentiation through immobilized bone morphogenic protein 2 (BMP2) to be used for personalized bone regeneration. METHODS A 3D gel based on heparin-conjugated collagen matrix capable of immobilizing recombinant human bone morphogenic protein 2 (BMP2) was synthesized. Isolated dental pulp Mesenchymal stem cells (MSCs) were then encapsulated into the bone ECM microenvironment to efficiently and uniformly seed a bioactive ceramic-based scaffold fabricated using additive manufacturing technique. The designed 3D cell-laden constructs were comprehensively investigated trough in vitro assays and in vivo study. RESULTS In-depth rheological characterizations of heparin-conjugated collagen gel revealed that elasticity of the matrix is significantly improved compared with freely incorporated heparin. Investigation of the MSCs laden collagen-heparin hydrogels revealed their capability to provide spatiotemporal bioavailability of BMP2 while suppressing the matrix contraction over time. The in vivo histology and real-time polymerase chain reaction (qPCR) analysis showed that the designed construct supported the osteogenic differentiation of MSCs and induced the ectopic bone formation in rat model. SIGNIFICANCE The presented hybrid constructs combine bone ECM chemical cues with mechanical function providing an ideal 3D microenvironment for patient-specific bone tissue engineering and cell therapy applications. The implemented methodology in design of ECM-mimetic 3D matrix capable of immobilizing BMP2 to improve seeding efficiency of customized scaffolds can be exploited for other bioactive molecules.
Collapse
Affiliation(s)
- Farahnaz Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mahdi Hasani-Sadrabadi
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Jessica Vargas
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Daryoosh Vashaee
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606, USA
| | - Douglas C Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Tahereh S Jafarzadeh Kashi
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Ghasemzadeh
- Department of Biomedical Sciences, Integrative Neuroscience Research Center, Marquette University, Milwaukee, WI 53201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
11
|
An injectable and self‐healing novel chitosan hydrogel with low adamantane substitution degree. POLYM INT 2019. [DOI: 10.1002/pi.5800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Jones DS, Yu T, Andrews GP. A statistical determination of the contribution of viscoelasticity of aqueous carbohydrate polymer networks to drug release. Carbohydr Polym 2019; 206:511-519. [DOI: 10.1016/j.carbpol.2018.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
|
13
|
Zhang B, Jayalath IM, Ke J, Sparks JL, Hartley CS, Konkolewicz D. Chemically fueled covalent crosslinking of polymer materials. Chem Commun (Camb) 2019; 55:2086-2089. [DOI: 10.1039/c8cc09823a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-equilibrium covalently crosslinked hydrogels are synthesized using carbodiimide fueled coupling of carboxylic acids to anhydrides which eventually dissipate by hydrolysis.
Collapse
Affiliation(s)
- Borui Zhang
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | | | - Jun Ke
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jessica L. Sparks
- Department of Chemical
- Paper and Biomedical Engineering
- Miami University
- Oxford
- USA
| | - C. Scott Hartley
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | | |
Collapse
|
14
|
Owczarz P, Ziółkowski P, Dziubiński M. The Application of Small-Angle Light Scattering for Rheo-Optical Characterization of Chitosan Colloidal Solutions. Polymers (Basel) 2018; 10:E431. [PMID: 30966466 PMCID: PMC6415461 DOI: 10.3390/polym10040431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022] Open
Abstract
In the recent studies on chitosan hydrogels, it was found that understanding both rheological and structural properties plays an important role in their application. Therefore, a combination of two independent techniques was applied to investigate micro- and macroscopic properties of chitosan colloidal system. Studies on viscous properties, as well as the sol-gel phase transition process, were performed using rheological methods coupled with the small angle light scattering (SALS) technique. Based on the anisotropy of scattering patterns obtained during rotational shear tests, it was found that the chitosan solution reveals two different behaviors delimited by the critical value of the shear rate. Below a critical value, chitosan clusters are deformed without breaking up aggregates, whereas after exceeding a critical value, chitosan clusters apart from deformation also breakup into smaller aggregates. The values of the radius of gyration determined by applying the Debye function allow one to state that with an increase of chitosan concentration, molecule size decreases. An analysis of the light scattering data from the temperature ramp test showed that with an increase of temperature, the level of polymer coil swelling increases. Simultaneously, the supply of thermal energy leads to a neutralization of the charge of chitosan chains. As a consequence, the formation of intermolecular links occurs and a gel structure is formed.
Collapse
Affiliation(s)
- Piotr Owczarz
- Department of Chemical Engineering, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Patryk Ziółkowski
- Department of Chemical Engineering, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Marek Dziubiński
- Department of Chemical Engineering, Lodz University of Technology, 90-924 Lodz, Poland.
| |
Collapse
|
15
|
Salimi-Kenari H, Mollaie F, Dashtimoghadam E, Imani M, Nyström B. Effects of chain length of the cross-linking agent on rheological and swelling characteristics of dextran hydrogels. Carbohydr Polym 2018; 181:141-149. [DOI: 10.1016/j.carbpol.2017.10.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
|
16
|
Dashtimoghadam E, Salimi-Kenari H, Forooqi Motlaq V, Hasani-Sadrabadi MM, Mirzadeh H, Zhu K, Knudsen KD, Nyström B. Synthesis and temperature-induced self-assembly of a positively charged symmetrical pentablock terpolymer in aqueous solutions. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Byambadorj T, Dashtimoghadam E, Malakoutian M, Davaji B, Tayebi L, Richie JE, Lee CH. On-chip detection of gel transition temperature using a novel micro-thermomechanical method. PLoS One 2017; 12:e0183492. [PMID: 28817711 PMCID: PMC5560686 DOI: 10.1371/journal.pone.0183492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/05/2017] [Indexed: 11/18/2022] Open
Abstract
We present a new thermomechanical method and a platform to measure the phase transition temperature at microscale. A thin film metal sensor on a membrane simultaneously measures both temperature and mechanical strain of the sample during heating and cooling cycles. This thermomechanical principle of operation is described in detail. Physical hydrogel samples are prepared as a disc-shaped gels (200 μm thick and 1 mm diameter) and placed between an on-chip heater and sensor devices. The sol-gel transition temperature of gelatin solution at various concentrations, used as a model physical hydrogel, shows less than 3% deviation from in-depth rheological results. The developed thermomechanical methodology is promising for precise characterization of phase transition temperature of thermogels at microscale.
Collapse
Affiliation(s)
- Tsenguun Byambadorj
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, United States of America
| | | | - Mohamadali Malakoutian
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, United States of America
| | - Benyamin Davaji
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, United States of America
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, United States of America
| | - James E. Richie
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, United States of America
| | - Chung Hoon Lee
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, United States of America
- * E-mail:
| |
Collapse
|
18
|
Andrei M, Stǎnescu PO, Drǎghici C, Teodorescu M. Degradable thermosensitive injectable hydrogels with two-phase composite structure from aqueous solutions of poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)—poly(ethylene glycol) triblock copolymers and biopolymers. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4161-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|